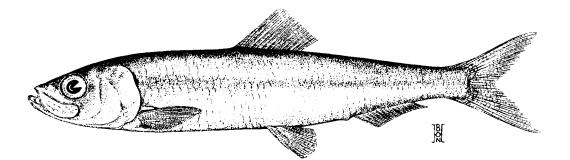

STATE OF WASHINGTON


November 2009

2008 Washington State Herring Stock Status Report

FPA 09-05

2008 Washington State Herring Stock Status Report

By

Kurt C. Stick and Adam Lindquist

Washington Department of Fish and Wildlife Fish Program Fish Management Division

November 2009

Stock Status Report No. FPA 09-05

Table of Contents

List of Figures	iii
Abstract	1
Introduction	2
Pacific Herring Life History	4
History of Puget Sound Herring Stock Identification	6
Stock Profile Parameters Stock Definition Overview Spawning Ground Prespawner Holding Area Spawning Timing Length Data Spawning Biomass Spawn Deposition Surveys Acoustic/Trawl Surveys Recruitment Annual Survival Biomass Age Composition	. 10 . 10 . 10 . 11 . 11 . 11 . 11 . 12 . 12 . 12 . 12
Spawner Fishery Data Quality Recent Trend Stock Status Documented Puget Sound Herring Spawning Grounds	. 13 . 13 . 13
South/Central Puget Sound Herring Stock Profiles	. 17 . 19 . 21 . 23 . 25 . 27 . 29 . 31 . 33 . 35
North Puget Sound Herring Stock Profiles Fidalgo Bay Herring Stock Samish/Portage Bay Herring Stock Interior San Juan Islands Herring Stock Northwest San Juan Island Herring Stock	. 41 . 43 . 45

Semiahmoo Bay Herring Stock Cherry Point Herring Stock	
Strait of Juan De Fuca Herring Stock Profiles Discovery Bay Herring Stock Dungeness/Sequim Bay Herring Stock	54 55
Puget Sound Herring Stock Status Summary	59
Puget Sound Herring Spawning Biomass Estimates, 1973-2008	62
Summary of Puget Sound Herring Fisheries	65
Natural Mortality	67
Coastal Herring Stock Profiles	70
Coastal Herring Summary Grays Harbor Herring Stock Willapa Bay Herring Stock	72
References	76
Acknowledgements	81
Appendix A. Estimated biomass in short tons (2000 lbs/ton) and number (millions of fish) at	

Appendix A.	Estimated biomass in short tons (2000 lbs/ton) and number (millions of fish) at
	age of spawner herring by stock by year (N caught includes only spawner fishery
	catches)

Figure 1.	Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Cherry Point stock, 1976-2008
Figure 2.	Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Cherry Point stock, 1976-2008
Figure 3.	Puget Sound Herring Cumulative Spawning Biomass Estimates, Cherry Point stock compared to all other stocks combined, 1973-2008
Figure 4.	Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Squaxin Pass stock, 1973-2008
Figure 5.	Puget Sound Herring Landings by Fishery Type, 1965-2007
Figure 6.	Natural and Fishery Mortality of Puget Sound Herring Stocks, 1976-2007 69

Abstract

This is the fourth edition of the Washington Department of Fish and Wildlife herring stock status report. Similar to previous editions, this document uses localized documented herring spawning grounds in Washington waters to represent discrete stocks. Several genetic studies published since 2001 have demonstrated that some Puget Sound herring stocks (e.g. Cherry Point and Squaxin Pass) are genetically distinct from other Puget Sound and British Columbia herring. However, differentiation has not been demonstrated between other sampled Puget Sound spawning aggregations, suggesting that sufficient gene flow between stocks may occur that reduces genetic divergence. The results of these studies indicate that it may be more meaningful to examine abundance trends of Puget Sound herring on a larger scale than the individual stock level presented in this report and point out the importance of annual sampling of all known spawning populations in Puget Sound.

The cumulative abundance of south and central Puget Sound herring stocks in recent years is comparable to that observed in the 1970's and 1980's, while the Cherry Point stock, and cumulative north Puget Sound (excluding the Cherry Point stock) and Strait of Juan de Fuca regional spawning biomasses are at low levels of abundance. Stock status classifications reported since 1994 have also followed similar trends, with the south/central region stocks generally considered healthy or moderately healthy and the other regions considered less healthy. For the 2007-08 period, less than half (47%) of Puget Sound herring stocks are classified as healthy or moderately healthy. This is the lowest percentage of individual stocks meeting these criteria since development of the stock status summary in 1994, although very similar to the status breakdown for the previous two-year periods (2003-04 and 2005-06).

The purpose of this report is to provide an evaluation of the current status of Pacific herring (*Clupea pallasii*) resource in Washington. This report is the fourth edition published by the Washington Department of Fish and Wildlife (WDFW) that addresses the status of the herring resource in Washington waters. The previous editions are 1994 Washington State Baitfish Stock Status Report (WDFW 1995), 1996 Forage Fish Stock Status Report (Lemberg et al. 1997), and 2004 Washington State Herring Stock Status Report (Stick 2005).

Forage fishes in general, and herring specifically, are vital components of the marine ecosystem and are a valuable indicator of the overall health of the marine environment. Many species of sea birds, marine mammals, and finfish, including lingcod (*Ophiodon elongatus*), chinook (*Oncorhynchus tshawytscha*) and coho (*O. kisutch*) salmon, depend on herring as an important prey item (DFO 2001, Fresh et al. 1981). Significant predation occurs at each stage of the herring life cycle starting with predation on deposited spawn by invertebrates, gulls and diving ducks.

Similar to previous editions, this document uses localized documented herring spawning grounds in Washington waters to represent discrete stocks. Evidence of stock structure may be shown through differences in demographic population statistics (age composition, growth rate, fecundity, etc.), morphology (morphometrics and meristics), or genetics (differentiation at allozyme or DNA loci) (O'Toole et al. 2000, Stout et al. 2001). Status reviews of Puget Sound¹ Pacific herring status conducted by the National Marine Fisheries Service concluded that local populations are the appropriate scale for fisheries management activities for Puget Sound herring (Stout et al. 2001) and that subpopulation structure is essential for the preservation of spawning potential and genetic and life history diversity (Gustafson et al. 2006).

A summary of Puget Sound herring life history information is presented to provide background for the following section discussing herring stock structure/identification. Several genetic studies published since 2001 have demonstrated that some Puget Sound herring stocks (e.g. Cherry Point and Squaxin Pass) are genetically distinct from other Puget Sound and British Columbia samples (Beacham et al. 2001, 2002, 2008, Small et al. 2005, Mitchell 2006). However, differentiation has not been demonstrated between other sampled Puget Sound herring stocks.

The stock assessment methodologies and criteria for evaluating the status of herring stocks in this report are generally similar to previous editions. The current sampling design for Washington herring calls for annual assessment of each stock in Puget Sound in order to provide an estimate of spawning biomass. Stock profiles, which include spawning location and timing information, annual run size estimates, and age and survival data are presented for each known Washington herring stock. The definitions for stock profile criteria follow this section.

¹ For the purposes of this report "Puget Sound" is considered to include all Washington state waters east of Port Angeles in the Strait of Juan de Fuca, including the San Juan Islands and the U.S. portion of the Strait of Georgia.

Following the Puget Sound stock status profiles, stock status summaries for 1994, 1996, 1998, 2000, 2002, 2004, 2006, and 2008 are provided and are followed by a discussion and graph of cumulative herring spawner biomass estimates for the 1975-2008 period.

In general, the abundance of south and central Puget Sound herring stocks in recent years is comparable to the 1970's and 1980's, while the Cherry Point stock, and cumulative north Puget Sound (excluding the Cherry Point stock) and Strait of Juan de Fuca regional spawning biomasses are at low levels of abundance. Stock status classifications reported since 1994 have also followed similar trends, with south/central stocks generally considered healthy or moderately healthy and the other regions considered less healthy.

An updated summary of Puget Sound herring fisheries and landings through 2007 is provided in the next section. Herring were included in the 1974 "Boldt Decision" defining Native American fishing rights, and therefore Washington stocks and fisheries are jointly co-managed statewide by WDFW and locally by area Tribal governments. Currently, the only active commercial herring fishery in Washington waters is the bait fishery which provides product primarily for recreational salmon fisheries.

A section discussing annual natural mortality for adult herring within Puget Sound is presented. Herring typically mature during the second or third year and recruit to the spawning population at that time. Although herring have been reported to live as long as fifteen years, currently relatively few appear to be surviving longer than age 5 or 6 in Puget Sound. Stock assessment results continue to indicate a high level of natural mortality for Puget Sound herring compared to the 1970s.

The final section gives a synopsis of available information for coastal herring. Stock profiles for Willapa Bay and Grays Harbor (spawning activity first documented in 1998) are included.

An appendix containing herring age composition summaries through 2008 is included. Estimated spawning biomass (tons) and number of fish at age are reported. These estimates are calculated from herring biological data resulting from acoustic/trawl surveys. Herring spawn for the first time at age two or three throughout Puget Sound at specific grounds between early January and mid-June, depending on the stock. Eggs are deposited mainly on marine vegetation in the intertidal and shallow subtidal zone. Spawning may occur during the day or at night (Hay 1986, WDFW unpub. data). Eggs hatch in approximately ten to fourteen days, depending on water temperature. Larval herring are about 7.5 mm (0.25 inch) in length upon hatching with limited ability to swim and are dispersed by tidal currents. However, herring larvae hatched in enclosed waters are dispersed at a relatively slow rate and can be found in the general spawning area up to eight weeks after spawning (Millikan and Penttila 1974, Trumble 1983). After the first week of drift, the larvae exhaust their yolk sac nutritional reserves and must be in the presence of microplankton of appropriate type and density to begin feeding successfully on their own (Penttila 2007).

Approximately twelve weeks after hatching the larval herring reach a length of about 30 mm (1.2 inches) and are recognizable as juvenile herring. Young-of-the-year (YOY) herring are one of the most abundant pelagic fishes found in nearshore waters of Puget Sound, particularly in the summer (Trumble 1983). Summer surface tow net surveys conducted in central and south Puget Sound indicated that YOY herring are concentrated along shorelines in June, but become widely dispersed through the summer (Gonyea et al. 1982, 1983).

Trumble (1983) stated that many juvenile herring overwinter in central and southern Puget Sound and migrate to Pacific Ocean feeding grounds from March to July, not returning to their spawning grounds until their first year of maturity. Two types of herring have long been recognized in the Canadian Strait of Georgia, based on their migratory habits: large "migratory" populations that migrate to offshore feeding grounds and minor local populations that are often found near the head of inlets or as "resident" populations in inshore areas year-round (Taylor 1964). The most typical situation there is for herring to migrate from offshore feeding grounds to nearshore holding areas one to several months before spawning, followed by a final movement to their spawning location a few days to a few weeks prior to spawning (Haegele and Schweigert 1985); similar to behavior attributed to a number of Puget Sound stocks (Trumble 1983). Following spawning, spent herring typically immediately leave the vicinity of their spawning grounds (Haegele and Schweigert 1985, Penttila 2007).

Significant natal homing, similar to salmon, has been attributed to Puget Sound herring and is based primarily on observed consistency of spawning timing and location (Bargmann 1998). However, unlike salmon, all herring do not typically die after their first spawning, and individual fish may spawn for several more years.

Greater length-at-age (i.e. faster growth rate) suggests that a herring stock is migratory, due to assumed greater productivity of ocean feeding grounds. Differences in growth rate has repeatedly been stated as evidence to support the classification of the Squaxin Pass (Case Inlet) herring population as resident (smaller size at age) and the Cherry Point stock as migratory (larger size at age) (Trumble 1983, Gonyea and Trumble 1983, Day 1987, Lassuy 1989). Chapman et al. (1941) also reported a tendency for an increase in growth rate for herring stocks in northern Puget Sound compared to the southern end of Puget Sound.

Tagging of adult herring on their spawning grounds in the 1950's from the Port Orchard-Port Madison, Quilcene Bay, and Holmes Harbor stocks is summarized in Gustafson et al. (2006) and documents significant migration of at least some of each stock to offshore feeding grounds. For each tagged stock at least one recovery was made on Swiftsure Bank (off southwest tip of Vancouver Island) or the west coast of Vancouver Island in the summer, in addition to tag returns at or near their tagging site. There were also tag returns for each tagged stock from the former reduction fishery in the southeast Vancouver Island region that occurred mostly from October to January.

History of Puget Sound Herring Stock Identification

The importance of the stock structure throughout the range of Pacific herring has been recognized since the start of management efforts. The recognition of individual stocks within the Puget Sound herring resource has been proposed for many years. Temporal and spatial specificity of observed spawn deposition and differences in biological data were the first characteristics used to support the independence of each spawning aggregation as a discrete stock.

Based largely on the fact that herring tend to return to spawn at about the same locations at about the same time year after year, Chapman et al. (1941) concluded their thesis that each spawning population is independent from any other received strong corroboration. Chapman et al. also suggested that the independence of spawning populations was demonstrated and that there was little, if any, intermixing between different spawning populations in Washington. This study formed the basis for considering each spawning aggregation to represent a discrete stock and this definition has continued to the present. Cleaver and Franett (1946) stated that it had been demonstrated that the stocks of herring in Washington are independent of each other based mainly on the consistency of spawning location and timing. However, their conclusions appear to be based entirely on the previous Chapman et al. (1941) study. Williams (1959) reported that the Chapman et al. study demonstrated that the stocks of herring in Puget Sound were somewhat independent of each other and that localized stocks that may be depleted receive very little recruitment from other stocks.

Based on differences in spawn timing and location, growth rates, patterns of annulus formation, and incidence of internal parasites, Trumble (1983) determined that several major discrete spawning herring populations existed in Puget Sound, and that several smaller stocks may also exist. Cherry Point (Strait of Georgia) and Case Inlet (Squaxin Pass) herring exhibited the most distinct characteristics that separated them from herring in other areas of Puget Sound. Trumble (1983) further stated that "spawning populations appear to maintain independence from other populations, and interbreeding between populations seems limited...".

Early genetic work, based on allozyme variation (Grant and Utter 1984), did not support the existence of discrete populations within Puget Sound herring. This study, which included samples from south Puget Sound (Hale Passage) and the Strait of Georgia (Cherry Point stock) observed genetic differentiation only over relatively large geographic areas, such as between Asian and eastern Pacific regions, and perhaps between Gulf of Alaska and California herring samples. Later studies, using mitochondrial DNA variation (Schweigert and Withler 1990) and ribosomal DNA sequence variation (Domanico et al. 1996), also did not provide any evidence of local genetic differentiation of eastern Pacific herring.

The analysis of microsatellite DNA loci appears to be a milestone in the detection of genetic variation among populations in more local areas of the eastern Pacific Ocean, such as Puget Sound and Canadian Strait of Georgia. Analyses completed by O'Connell et al. (1998) of Alaska herring were the first to suggest that microsatellite DNA loci detected genetic differentiation than with previous techniques used.

The initial documentation of significant genetic differentiation for Washington state herring was reported by Beacham et al. (2001, 2002), who found that herring spawning at Cherry Point were distinct from sampled Canadian Strait of Georgia herring. However, these studies also found little genetic variation among British Columbia (B.C.) herring stocks. This finding was considered consistent with estimated straying rates from tagging studies among stocks that are sufficient to homogenize allele frequencies over large geographic areas.

Tagging studies of B.C. herring have indicated a high fidelity (repeat homing to a spawning location) rate of 75-96% of tagged fish at-large for one year, which also indicates a sizable straying rate of 4-25% (Ware et al. 2000). It should be noted that this is not a measure of natal homing. Gustafson et al. (2006) concluded that the high fidelity rate provides the biological basis for existing B.C. herring stock management because most of the adult herring return to the same region to spawn the following year and that the observed straying rates reduce genetic divergence among the five major populations. In his analysis of the same tagging data, Hay (2001) suggests a minimum area size of about 500 km² to support high fidelity. Ware et al. (2000) also concluded that their analysis suggests that the straying rate is density-dependent; it appears to increase linearly as the population increases.

The dramatic one-year increase in spawning biomass observed for the Discovery Bay herring stock in 2006 may be an example of significant straying of adults to different spawning grounds. The estimated spawning biomass for this stock in 2006 was 1,325 tons. The presumed 2 to 5 year old adults that would have comprised most of the 2006 spawning biomass were spawned in years that had a mean spawning biomass of only 186 tons and spawning biomass for the two years following 2006 was less than 250 tons.

Small et al. (2005) examined temporal and spatial genetic variation for herring, including samples of prespawning adult herring from Cherry Point, Semiahmoo Bay, Fidalgo Bay, Port Gamble, and Squaxin Pass collected over intervals of two to four years. They demonstrated consistent genetic differentiation between the Cherry Point, Squaxin Pass, and the other three Washington samples and considered the degree of genetic differentiation for these two stocks (Cherry Point and Squaxin Pass) to be "remarkable" given the small spatial scale involved. Late spawn timing (Cherry Point) and geographic isolation (Squaxin Pass) were suggested as the primary causes for the observed levels of genetic distinctiveness.

The genetic differentiation of the Cherry Point herring stock was further demonstrated by Mitchell (2006). Microsatellite DNA loci were examined for samples from Cherry Point, Semiahmoo Bay, Port Gamble, Quartermaster Harbor, and Squaxin Pass herring with an increased temporal scale of six years. Genetic differentiation was consistent over six years for the Cherry Point stock (samples from 1999, 2004, and 2005), but the genetic differentiation of Squaxin Pass (Case Inlet) fish from 1999 was not observed in 2005 samples. However, 2007 samples again demonstrated differentiation (Mitchell et al. (in prep)). There was a lack of genetic differentiation among the other area samples in this study.

Interestingly, in 2008, significant spawning activity (approximately 500 tons of spawners) was documented for the first time in an area not previously known to support spawning activity in south Puget Sound at the north end of Carr Inlet (Purdy/Henderson Bay). This location is

relatively far (approx. 10 miles) from the closest previously documented spawning grounds in Wollochet Bay. Spawning was in mid-March, which is considerably later than Wollochet Bay spawning but within the documented spawn timing for the Squaxin Pass stock. Spawning activity here was obvious with significant numbers of seabirds and harbor seals indicating the location of spawn deposition, making it likely that this location had not previously hosted annual spawn deposition. If that is the case, occurrences such as this do not support the concept of stock discreteness based primarily on spawning location and timing. Sampling effort will be made in 2009 to document continued spawning activity in this area and to collect age composition and genetic samples via acoustic/trawl assessment.

The most recent study involving samples from Washington herring again produced results showing genetic differentiation of Cherry Point herring (Beacham et al. 2008). Significant differentiation was observed between the Cherry Point stock and samples from the Kilisut Harbor (Port Townsend) and Skagit Bay prespawning fish in 2004, but no significant difference observed between the Port Townsend and Skagit Bay samples. On average, the Washington herring were also distinct from those in other regions, particularly those in British Columbia. Similar to previous studies, the authors suggested that unique spawning timing has led to the observed genetic differentiation of the Cherry Point stock. Also noteworthy from this work based on summer mixed-stock samples is the indication that "resident" herring from the west side of the Strait of Georgia are primarily derived from primary-timed spawning (i.e. "migratory") populations that did not migrate to offshore summer feeding grounds. Conversely, samples of "resident" herring from the east side of the strait had higher proportions of mainland inlet origin ("resident") fish.

It is most likely that Puget Sound herring consist of a combination of "migratory" and "resident" fish. It is also probable that many of the stocks in Puget Sound consist of migratory and resident individuals, as suggested by Penttila (1986). The review of genetic studies to date involving Puget Sound herring provides solid evidence of the genetic distinctness of the Cherry Point stock. It also appears that the Squaxin Pass (Case Inlet) stock may also be genetically differentiated from other herring populations, although the results from 2005 samples (Mitchell 2006) presumed to be from the same prespawning aggregation as other years is troublesome.

The observed lack of differentiation among other genetically sampled herring stocks from Puget Sound (Quartermaster Harbor, Port Gamble, Kilisut Harbor, Skagit Bay, Fidalgo Bay, and Semiahmoo Bay) suggests sufficient gene flow between populations, particularly those with similar spawn timing, that would reduce genetic divergence. With the exception of Cherry Point and possibly Squaxin Pass herring, Puget Sound herring stocks may be part of a metapopulation similar to the model assumed for B.C. herring. The development of new methods to detect genetic differentiation presented above also points out the possibility that future technologies may demonstrate that further population discreteness for Puget Sound herring exists. While it is important to protect all documented herring spawning grounds it may be more meaningful to examine abundance trends on a larger scale than the individual stock level presented in this report.

Potentially relevant to the discussion of stock structure and identification of Puget Sound herring is the fourth of a series of papers by Ware and Tovey (2004) outlining evidence that B.C. herring are spatially structured and interact as a metapopulation. They analyzed spawn time series

between 1943 and 2002 for indications of "disappearance" and "recolonization" events at the spatial scale of "sections", which on average contain about 250 km (150 miles) of shoreline. A disappearance event was assumed to have occurred in a section when five consecutive years of no spawn appeared in the time series. A recolonization event was assumed to have occurred when spawning was documented after a disappearance event. The authors identified 82 spawn disappearance events for the sixty year period examined and found that more than half (55%) of the sections was identified to have experienced one or more disappearance events. They found that sections with larger amounts of spawn habitat experienced fewer disappearance events than smaller sections and stated that the high degree of straying between nearby sections explain why herring spawning aggregations at the section spatial-scale are so dynamic. The authors also mention that their analysis may have overestimated the frequency of disappearance events in sections with very small spawn habitat indices (i.e. smaller spawning biomass) because it was not always known if a section had received survey effort.

If Puget Sound herring stocks, with the demonstrated exceptions of Cherry Point and Squaxin Pass, interact as a metapopulation similar to that attributed to B.C. herring, observed "disappearance" and/or dramatic decreases in abundance (e.g. N.W. San Juan Island, Kilisut Harbor, and Discovery Bay) of individual stocks may not be cause for major concern. Due to uncertainties of stock structure, annual sampling of all known spawning stocks in Puget Sound should continue. Additional collection of genetic samples involving as many spawning aggregations as possible should be pursued.

In general, the results of genetic studies to date also support current management of the commercial herring bait fishery, which operates on a maximum harvest guideline based on regional cumulative spawning biomass estimates.

Stock Profile Parameters

The parameters used to develop each profile are described below. Specific status ratings for each stock take into account all measurable factors available but are weighted toward spawning biomass average and trend, recruitment, and annual survival.

Stock Definition

Herring routinely spawn at specific sites or grounds throughout Washington waters each year. Documented Puget Sound spawning areas through the 2008 spawning season are shown in the map on page 15. For this report, localized spawning grounds are considered to represent a discrete stock. This assumption is based in part on early meristic studies, which concluded that heterogeneity exists among herring samples taken from various spawning areas throughout Puget Sound (Chapman et al. 1941). In addition, WDFW assessment survey results have indicated stock specific characteristics such as different growth characteristics, distinctive spawning location and timing, and prespawner holding area behavior, which have supported the assumption of stock autonomy for Puget Sound herring presented in this report (Trumble 1983 and O'Toole 2000).

However, recent genetic studies have suggested that only the Cherry Point and Squaxin Pass herring stocks are genetically distinct from each other and other Washington and British Columbia stocks (Beacham et al. 2001, 2002, 2008, Small et al. 2005, Mitchell 2006). Genetic distinction between other sampled Puget Sound stocks has not been demonstrated (Small et al. 2005, Mitchell 2006, Beacham et al. 2008).

Stock based assessment data are very useful for localized fisheries management issues and plans. However, if straying rates between Puget Sound herring stocks are comparable to reported British Columbia herring behavior based on tagging results (Ware et al. 2000; Hay et al. 2001), it may be necessary to reconsider what represents a "stock" for Puget Sound herring. Further discussion of this topic is presented later in this document. Recent genetic studies suggest it may be more meaningful to examine herring abundance trends in Puget Sound on a larger scale than the presented stock structure.

Overview

Overview provides any unique information about or characteristics of the stock.

Spawning Ground

The **Spawning Ground** map depicts the cumulative documented spawning ground for each stock. Herring deposit transparent, adhesive eggs primarily on lower intertidal and shallow subtidal eelgrass and marine algae. In Washington most spawning activity takes place between 0 and -10 feet MLLW in tidal elevation.

Prespawner Holding Area

Where known, the **Prespawner Holding Area** depicts the location, usually adjacent to the spawning ground in deeper waters, where ripening adult herring congregate and hold prior to spawning. Schools of prespawning adults typically begin concentrating three to four weeks or more before the first spawning event (Trumble et al. 1982).

Spawning Timing

Spawning Timing for herring in Washington lasts from late January through early June, with each stock generally spawning for approximately a 2-month period. The spawning timing figure for each stock indicates the occurrence of any documented spawning activity within the first or second half of a month. Observed peak spawning is indicated by cross-hatched cells.

Length Data

The **Length Data** such as mean length-at-age and other basic growth data provides additional evidence for stock separation. For example, some faster growing stocks (e.g. Cherry Point) are more likely to have an annual migration from inshore spawning grounds to more productive open ocean feeding areas, while other slower growing stocks (e.g. Squaxin Pass) might be more "resident," remaining inside the Puget Sound basin year round. Mean standard length (mm) at age for age 2, 3, 4, and 5 herring are reported for the 2008 spawning season or the most recent year data were available.

Spawning Biomass

Spawning Biomass is the term used to quantify the tonnage of spawner herring abundance. Two methods are used to provide quantitative estimates of herring abundance; spawn deposition surveys (Stick 1994) and acoustic/trawl surveys (Burton 1991). Prior to 1996, the spawning biomass for the 10-12 larger Puget Sound stocks typically was assessed by both methods each year while the smaller 6-8 stocks were surveyed by spawn deposition surveys on a 3-year rotational basis. Since 1996, duplicate assessment coverage has been reduced and assessment for all known herring stocks is attempted each year by either one or both methods. If both methods are utilized, the spawn deposition estimate is used as the final run size estimate if survey coverage is considered to be adequate. Final spawning biomass estimates also include any directed spawner fishery harvest that may have occurred. The two assessment techniques have generally shown good correspondence (Burton 1991). The years when significant variance occurs are usually associated with sampling related problems such as survey timing, adverse weather, equipment malfunctions, etc.

Spawn Deposition Surveys

Spawn Deposition Surveys provide a direct estimate of herring spawning biomass. Marine vegetation on spawning grounds is sampled for location of spawn deposition and spawn density, and those data are converted to an estimate of spawning escapement (Stick 1994). These surveys are generally conducted weekly during a stock's spawning season to document cumulative spawn deposition.

Acoustic/Trawl Surveys

Acoustic/Trawl Surveys are conducted on the prespawner holding areas early in, or prior to, the spawning season when prespawner abundance is peaking. This method utilizes computer interfaced echosounding equipment that produces real-time estimates of total fish abundance, which are apportioned to herring biomass based on trawl catch data (Lemberg et al. 1990). The weighted data from all trawl samples for each stock are pooled and extrapolated to the final spawning biomass estimate from spawn deposition surveys, if that estimate is used as the final spawning biomass amount. Analyses of the trawl caught samples provide the basis for detailed stock indices such as biomass age composition, annual survival rates, and recruitment (O'Toole 1993).

Recruitment

Recruitment is an estimate of the biomass of new spawners in a particular year. New recruits consist of 2-year old spawners plus the calculated biomass of 3-year old spawners that spawned for the first time.

Annual Survival

The **Annual Survival** rate is the estimated percentage of spawning herring (age 3 and older) in a particular year that survived to spawn again in the following year.

Biomass Age Composition

Biomass Age Composition represent estimated tonnage at age of the current year's spawning run and is estimated from acoustic/trawl data.

Spawner Fishery

Spawner Fishery summarizes adult (spawner) herring harvests. Potential adult herring fisheries in recent years have been limited to the Cherry Point stock (the commercial product is roe). No harvest of this stock has been allowed there since 1996 due to low spawning biomass abundance.

Spawn-on-kelp (SOK) and sac-roe fisheries have been allowed when the Cherry Point stock size is considered appropriate for harvest (minimum of 3,200 tons).

Fish handling practices inherent to the SOK fishery result in predisposition of herring populations to epizootic mortality from viral hemorrhagic septicemia (VHS). These epizootics, characterized by high mortality and massive viral shedding among affected cohorts, frequently occur in herring impoundments used for a closed pound SOK fishery (Hershberger et al. 1999). In addition to creating localized epizootics inside the herring impoundments, shed waterborne virus can emanate from the net pens and represent a significant risk factor for initiating VHS epizootics in unconfined herring over a larger geographic area. SOK fishery management options exist that can decrease the probability of localized VHS epizootics within herring net pens (Hershberger et al. 2001), and should be considered if /when conditions warrant reopening of SOK fisheries.

Data Quality

Data Quality - Determined by the relative amount of stock assessment data.

Good - A continuous time series of acoustic-trawl data and spawn deposition data.

Fair - A continuous time series of spawn deposition data only.

Poor - An incomplete time series of either type of stock assessment data.

Recent Trend

Recent Trend - Slope of the regression for the most recent five years (2004-2008) of spawning biomass estimates.

Increasing - Statistically significant positive slope (95% confidence level). **Stable** - Slope not statistically significant.

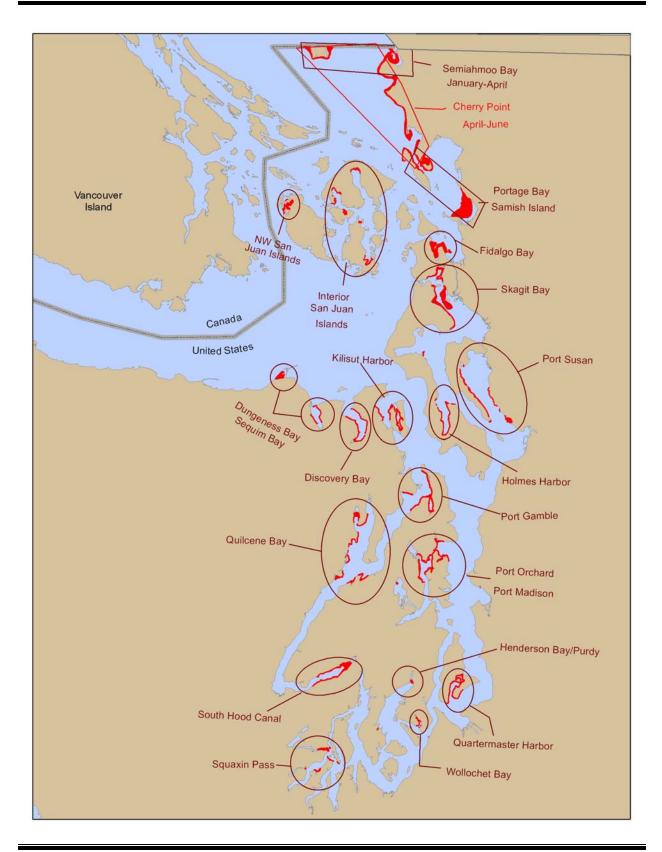
Decreasing - Statistically significant negative slope (95% confidence level).

Stock Status

Describes a stock's current condition based primarily on most recent 2 year abundance (spawning biomass) compared to long-term (25 year) mean abundance. Stock criteria such as survival, recruitment, age composition, and spawning ground habitat condition are also considered.

Healthy - A stock with recent 2-year mean abundance above or within 10% of the 25 year mean (1984-2008).

Moderately Healthy - A stock with recent 2-year mean abundance within 30% of the 25 year mean, and/or with high dependence on recruitment.

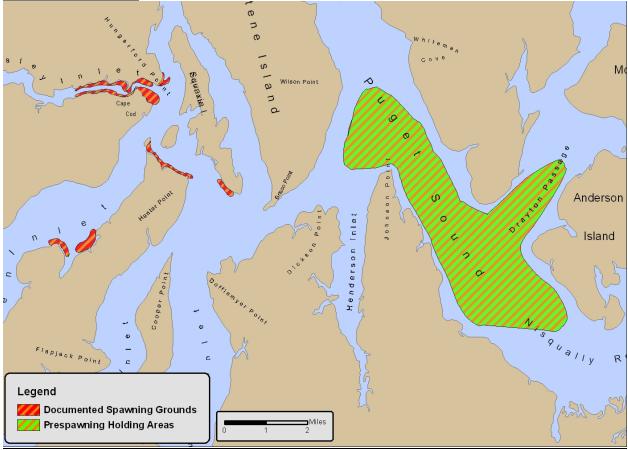

Depressed - A stock with recent abundance well below the long-term mean, but not so low that permanent damage to the stock is likely (i.e., recruitment failure).

Critical - A stock with recent abundance so low that permanent damage to the stock is likely or has already occurred (i.e., recruitment failure).

Disappearance - A stock that can no longer be found in a formerly consistently utilized spawning ground.

Insufficient Data- Insufficient assessment data to identify stock status with confidence.

Documented Puget Sound Herring Spawning Grounds

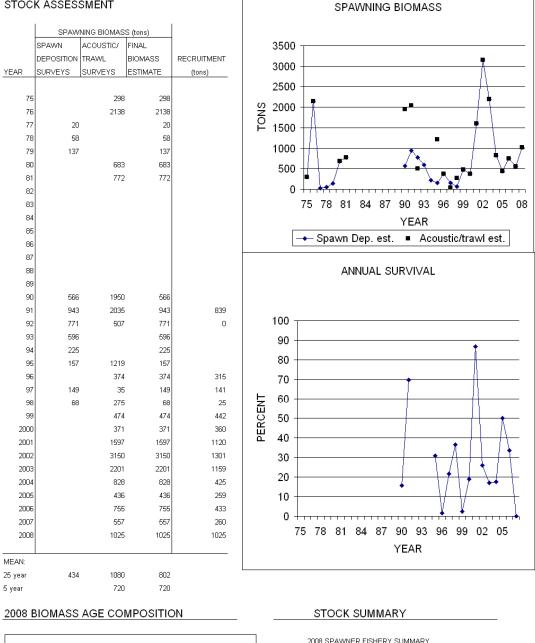

South/Central Puget Sound Herring Stock Profiles

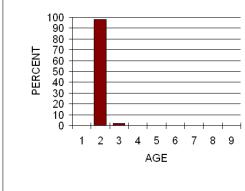
Squaxin Pass Herring Stock

OVERVIEW

The southernmost stock within the Puget Sound basin, Squaxin Pass herring exhibit unusual spawning behavior. Marine algae normally utilized for spawning substrate by herring are sparse in this area and spawn deposition often occurs on rocks and gravel, occasionally quite deep. Such behavior does not lend itself well to assessment from the spawn deposition survey methods, which may explain the large differences between the spawn deposition and acoustic/trawl survey estimates for this stock. The Squaxin Pass herring stock has the slowest known growth rate in Washington. Abundance of this stock has been relatively high in recent years, averaging over 1,100 tons for the last ten years. Genetic study results mentioned previously in this report have demonstrated genetic differentiation of this stock from others in Puget Sound. Geographic isolation is suggested as the primary cause for the observed genetic divergence. Observed spawn deposition in Carr Inlet in 2008 could be attributed to this stock.

SPAWNING GROUND




SPAWNING TI	<u>MING</u>				
Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3 YEAR OLDS 127mm/175mm (2008)

STOCK STATUS PROFILE for Squaxin Pass Herring Stock

STOCK ASSESSMENT

2008 SPAWNER FISHERY SUMMARY no fishery

DATA QUALITY fair

RECENT TREND (5 year) stable

STOCK STATUS (2 year) healthy: 99% of 25 yr mean spawning biomass

Wollochet Bay Herring Stock

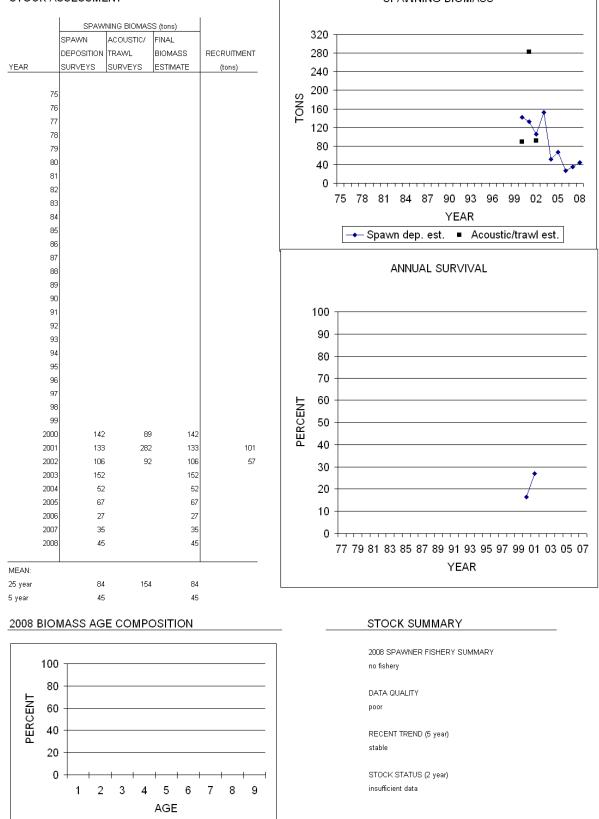
OVERVIEW

The Wollochet Bay stock's spawning grounds were recently documented with spawn first observed during the 2000 season. This confirms reported spawning activity from the late 1930s (Chapman et al. 1941). Stock size appears to be small, with a high of 152 tons estimated in 2003. Prespawning fish attributed to this spawning ground appear to congregate in Hale Passage. Spawn timing is early with a peak in late January to early February. Timing of spawning activity here is earlier than that observed in 2008 in Carr Inlet (Purdy/Henderson Bay), which was in mid to late March, suggesting that these stocks are discrete.

oint Gig Harbor Bont Defance Carr Inlet 5 ≥ 0 ω Ø 2 Ø Tacoma Q 5 Penrose 0 Legend Documented Spawning Grounds Miles Prespawning Holding Areas

SPAWNING GROUND

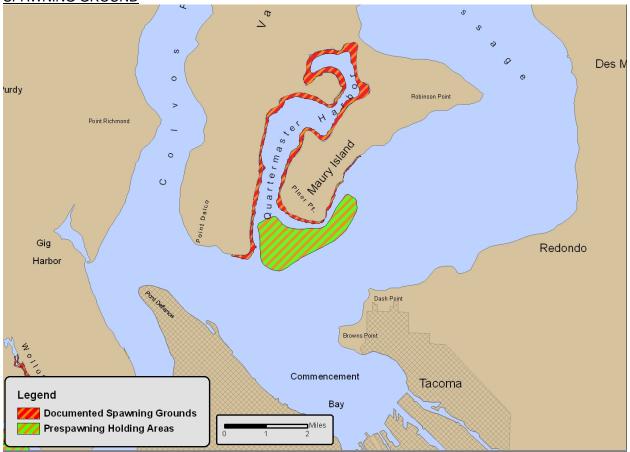
SPAWNING TIMING


1	Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS 139mm/150mm/181mm/196mm (2002)

STOCK STATUS PROFILE for Wollochet Bay Herring Stock

STOCK ASSESSMENT


SPAWNING BIOMASS

Quartermaster Harbor Herring Stock

OVERVIEW

The Quartermaster Harbor herring stock spawning activity occurs relatively early in the year, with spawning often beginning in early January. Spawn deposition is typically centered near Dockton on Maury Island. Growth and spawning behavior characteristics for this stock are considered to be average for central/south Puget Sound. Spawning biomass peaked in 1995 at 2,001 tons, followed by a general decrease through 2008. One genetic study (Mitchell 2006) that included a sample from this stock did not demonstrate genetic differentiation between it and other Puget Sound samples, with the exception of Squaxin Pass and Cherry Point herring.

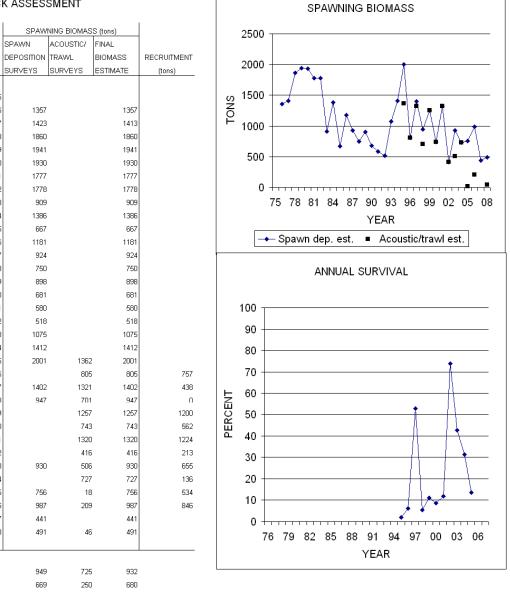
SPAWNING GROUND

SPAWNING TIMING

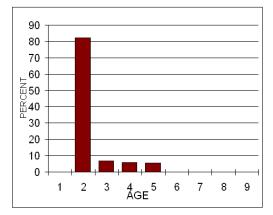
Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS 129mm/166mm/187mm/199mm (2008)

STOCK STATUS PROFILE for Quartermaster Harbor Herring Stock


STOCK ASSESSMENT

SPAWN


YEAR

MEAN: 25 year

5 year

2008 BIOMASS AGE COMPOSITION

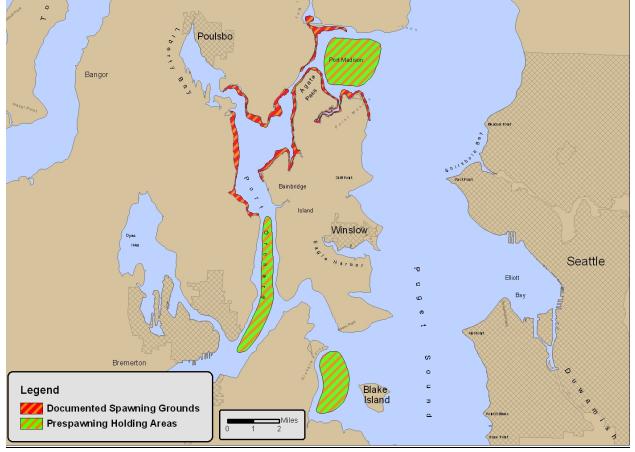
STOCK SUMMARY

2008 SPAWNER FISHERY SUMMARY no fishery

DATA QUALITY fair

stable

RECENT TREND (5 year)


STOCK STATUS (2 year) depressed: 50% of 25 yr mean spawning biomass

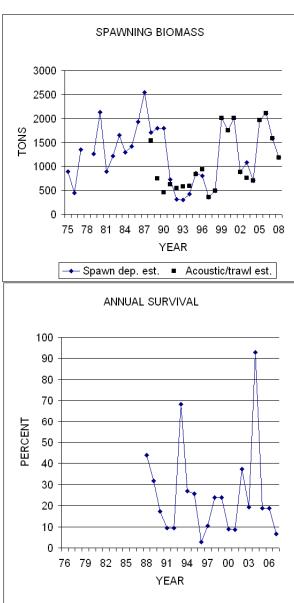
Port Orchard/Madison Herring Stock

OVERVIEW

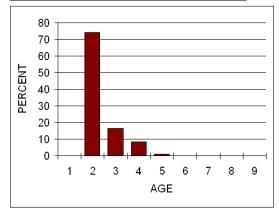
The Port Orchard/Madison herring stock abundance has been fairly stable since a low point in the 1990s, with a mean spawning biomass of over 1,500 tons in the last ten years. Spawn deposition in recent years has primarily been observed in Hidden Cove (north Bainbridge Island) and Point Bolin (southeast of Poulsbo) areas. Several separate prespawner holding areas are reliably observed, with a significant increase in abundance in the Yukon Harbor holding area east of Blake Island noted in recent years. Inclusion of samples from this stock for future genetic studies would be desirable, given the significant size of observed spawning biomass for this area and the central location of its spawning grounds.

SPAWNING GROUND

SPAWNING TIMING



142mm/168mm/178mm/182mm (2008)


STOCK STATUS PROFILE for Port Orchard/Madison Herring Stock

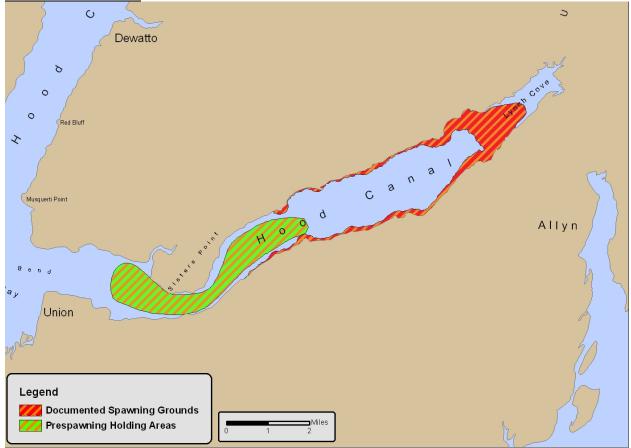
STOCK ASSESSMENT

	SPAW	NING BIOMAS				
	SPAWN	ACOUSTIC/				
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT		
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)		
75	887		887			
76	447		447			
77	1348		1348			
78						
79	1255		1255			
80	2133		2133			
81	891		891			
82	1214		1214			
83	1651		1651			
84	1293		1293			
85	1415		1415			
86	1926		1926			
87	2538		2538			
88	1705	1537	1705			
89	1739	743	1795	853		
90	1795	456	1795	1123		
91	722	630	722	339		
92	314	544	314	223		
93	304	582	304	256		
94	424	596	424	104		
95	863	831	863	708		
96	806	932	806	517		
97		360	360	325		
98		489	489	439		
99		2006	2006	1809		
2000		1756	1756	1139		
2001		2007	2007	1770		
2002		878	878	648		
2003	1085	755	1085	673		
2004		700	700	398		
2005		1958	1958	1176		
2006		2112	2112	1647		
2007		1589	1589	1089		
2008		1186	1186	963		
MEAN:						
25 year	1209	1078	1281			
5 year		1509	1509			

2008 BIOMASS AGE COMPOSITION

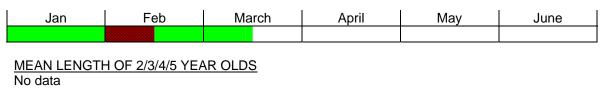
STOCK SUMMARY

2008 SPAWNER FISHERY SUMMARY no fishery DATA QUALITY good

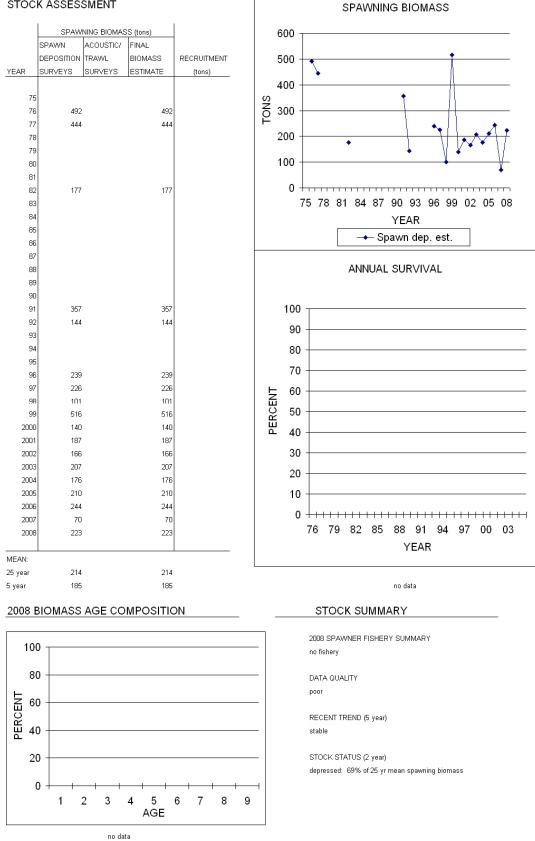

RECENT TREND (5 year) stable

STOCK STATUS (2 year) healthy: 108% of 25 yr mean spawning biomass

South Hood Canal Herring Stock

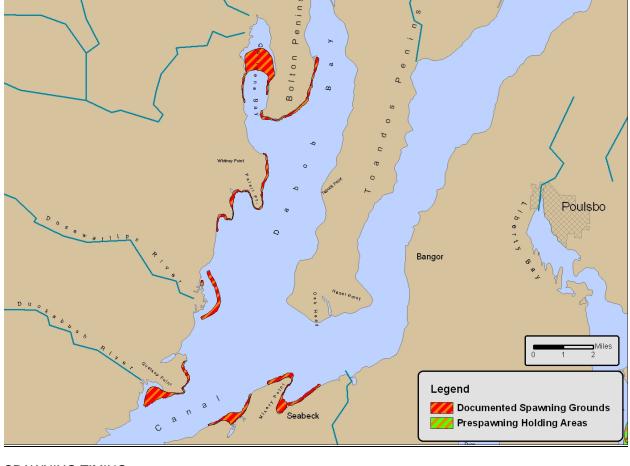

OVERVIEW

Spawning activity by this small herring stock is generally confined to Lynch Cove at the head of south Hood Canal. Spawning starts relatively early (by mid-January) and typically is finished by early March. Estimated spawning biomass averages slightly over 200 tons, with a high of 516 tons observed in 1999, and a low of 70 tons estimated in 2007. Effects of low dissolved oxygen levels in mainstem Hood Canal on the abundance of this stock are unknown. However, other than the mentioned decrease in 2007, estimated spawning biomass has been fairly stable. The location of this stock's spawning grounds at the end of Hood Canal could contribute to genetic differentiation similar to that observed for Squaxin Pass and remote inlet "resident" herring populations in British Columbia, although stock samples have not been included in any study to date.


SPAWNING GROUND

SPAWNING TIMING

STOCK STATUS PROFILE for South Hood Canal Herring Stock


STOCK ASSESSMENT

Quilcene Bay Herring Stock

OVERVIEW

The Quilcene Bay herring stock is currently one of the largest in Puget Sound with mean annual spawning biomass of over 2,100 tons since 1999. Based primarily on fishery landings, this stock was considered to be one of the largest herring stocks in Washington waters in the 1930's through the 1950's (Chapman et al. 1941, Williams 1959), followed by an apparent significant decrease in abundance from that time to the mid-1990's. Documented spawning grounds have been significantly expanded since 1998. Most spawn deposition in recent years has occurred at the south end of the Bolton Peninsula and the shoreline from Jackson Cove to Point Whitney. An observed inverse abundance relationship with the Port Gamble herring stock may indicate spawning stock linkage, with intermixing and straying between spawning grounds probable. Limited tagging recoveries suggest that this stock is "migratory", with migration to summer offshore feeding grounds.

SPAWNING GROUND

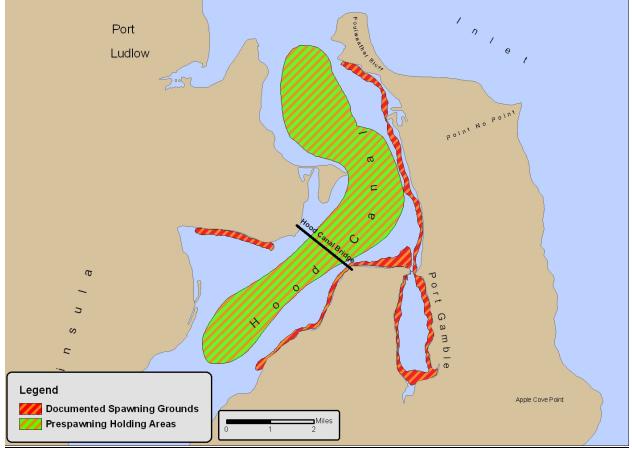
SPAWNING TIMING

Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS No data

STOCK STATUS PROFILE for Quilcene Bay Herring Stock

STOCK ASSESSMENT


тос	K ASSES	SMENT			SPAWNING BIOMASS
	SPAW	NING BIOMAS	SS (tons)		3000
	SPAWN	ACOUSTIC/	FINAL		
	DEPOSITION		BIOMASS	RECRUITMENT	2500
EAR	SURVEYS	SURVEYS	ESTIMATE	(tons)	
	00111210	Joonneno	Louine	(rono)	2000
75					
			270		
76			279		I F I I I I I I I I I I I I I I I I I I
77	232		232		1000
78			14		↓ ↓ ·
79					500
80					
81					0 +
82					75 78 81 84 87 90 93 96 99 02 05 08
83					YEAR
84					I EAR
85					─ → Spawn dep. est.
86					• Opawir dep. est.
87	68		68		
88					ANNUAL SURVIVAL
89					
90					
91	204		204		100
92			204		
93			37		90
94					80
94 95			817		
					70
96			328		
97	465		465		
98			1152		ÿ 50 <u>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−</u>
99			2464		
2000			2426		<u> </u>
2001	2091		2091		30
2002			2585		
2003			916		20
2004			2342		10
2005			1125		10
2006			2530		0 +++++++++++++++++++++++++++++++++++++
2007	2372		2372		76 79 82 85 88 91 94 97 00 03 0
2008	2531		2531		
					YEAR
EAN: year	1442		1442		no data
year	2180		2180		10 000
008 E	BIOMASS	AGE CO	MPOSITIC	DN	STOCK SUMMARY
	100				2008 SPAWNER FISHERY SUMMARY
1	100				no fishery
	80				DATA QUALITY
⊢					
Z	60				fair/poor
PERCENT					
LL.	40				RECENT TREND (5 year)
ш					stable
Б					—
Ы	20				STOCK STATUS (2 year)
ЪЕ	20				
ΡE	20				healthy: 170% of 25 yr mean spawning biomass
ΡE	0	2 3	4 5	6 7 8 9	
PE		2 3	4 5 AGE	6 7 8	healthy: 170% of 25 yr mean spawning biomass

Port Gamble Herring Stock

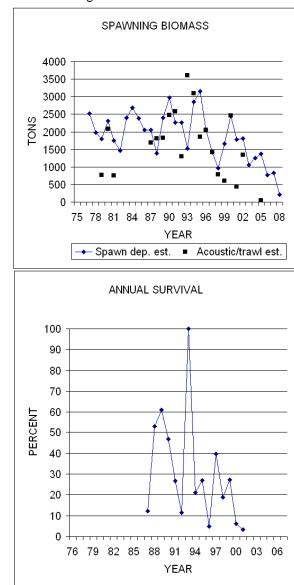
OVERVIEW

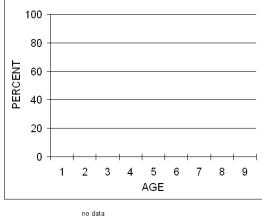
The Port Gamble herring stock has generally been considered one of the larger stocks in Puget Sound since quantitative survey effort began in the late 1970's. However, it has followed a decreasing trend since 2000, when the spawning biomass estimate was almost 2,500 tons. A record low of only 208 tons was estimated in 2008. Spawning activity is centered in Port Gamble Bay. Since 2003, previously reliable prespawner concentrations have inexplicably not been located by acoustic/trawl surveys; followed by normal distribution and timing of spawn deposition. Abundance trends compared to Quilcene Bay stock may indicate linkage between the two stocks. Genetic samples from this stock were not considered distinct from other Puget Sound populations (Small 2005, Mitchell 2006). Interestingly, in descriptions of known spawning grounds at the time, there is no mention of this area by Chapman et al. (1941) or Williams (1959).

SPAWNING GROUND

SPAWNING TIMING

Jan	Feb	March	April	May	June


MEAN LENGTH OF 2/3/4/5/6/7/9 YEAR OLDS

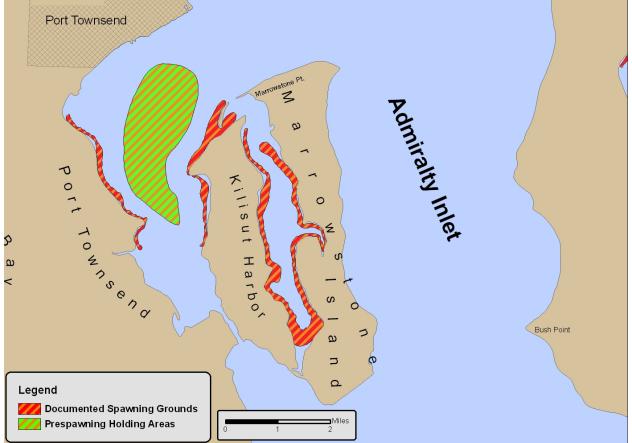

144mm/158mm/170mm/180mm/184mm/180mm/187mm (2005)

STOCK STATUS PROFILE for Port Gamble Herring Stock

STOCK ASSESSMENT

	SPAW	NING BIOMAS	S (tons)	
	SPAWN	ACOUSTIC/	FINAL	
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)
	BOILVEID	DOINETO	CONMANE	(10113)
75				
76				
77			2525	
78	1984		1984	
79	1790	772	1790	
80	2309	2077	2309	
81	1753	761	1753	
82	1463		1463	
83	2407		2407	
84	2685		2685	
85	2387		2387	
86	2050		2050	
87	2046	1688	2046	
88	1390	1808	1390	980
89	2395	1824	2395	1567
90	2969	2470	2969	811
91	2355	2410	2259	655
92	2270	1291	2270	1569
93	1521	3614	1521	1225
94	2857	3099	2857	327
95	3158	1862	3158	2402
96	0100	2058	2058	947
97		1419	1419	1250
98	971	792	971	346
99	1664	608	1664	1429
2000		2459	2459	1916
2001	1779	444	1779	1526
2002	1812	1342	1812	1133
2003	1064		1064	
2004	1257		1257	
2005	1372	44	1372	
2006	774		774	
2007	826		826	
2008	208		208	
2000	200		200	
MEAN:				
25 year	1805	1729	1826	
5 year	887	44	887	
,				
2008 E	BIOMASS	AGE COI	MPOSITIC	N

STOCK SUMMARY


2008 SPAWNER FISHERY SUMMARY no fishery DATA QUALITY fair RECENT TREND (5 year) decreasing STOCK STATUS (2 year) depressed: 28% of 25 yr mean spawning biomass

Kilisut Harbor Herring Stock

OVERVIEW

The Kilisut Harbor herring stock is a small south/central Puget Sound stock with recent years' observed spawning activity entirely within Kilisut Harbor. Spawning activity usually begins in early February with peak spawning in March. Growth characteristics are average for Puget Sound. Estimated spawning biomass for this stock has steadily decreased since 2002 and no spawn deposition was observed in 2008. The recent five year trend is a significant decrease and the individual stock is considered depressed. A sample from this stock was included in a recent genetic study (Beacham et al. 2008) and significant genetic differentiation was observed between this stock and the Cherry Point stock with no significant difference compared to the Skagit Bay stock. This finding suggests gene flow between this stock and others in Puget Sound.

SPAWNING GROUND

SPAWNING TIMING

MEAN LENGTH OF 2/3/4/5 YEAR OLDS 142mm/152mm/163mm/180mm (2008)

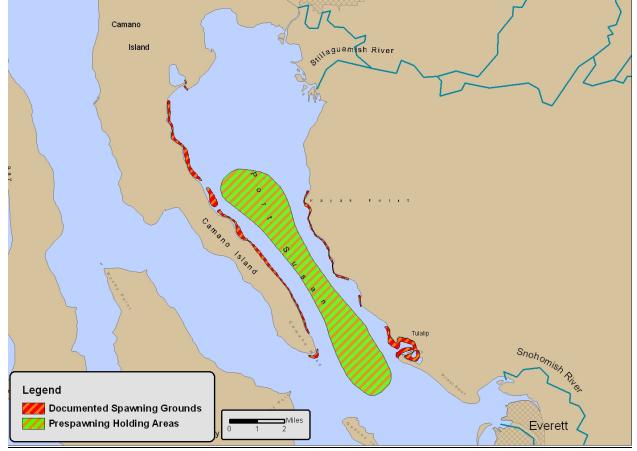
STOCK STATUS PROFILE for Kilisut Harbor Herring Stock

STOCK ASSESSMENT

STOC	K ASSES	SWENT				SPAWNING BIOMASS
	SPAW	NING BIOMA	SS (tons)			
	SPAWN	ACOUSTIC/	FINAL			
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT		900
'EAR	SURVEYS	SURVEYS	ESTIMATE	(tons)		800
			1			700
75	279	I	279			600 +
76			495		0	500
77	430		450		TONS	
	254		254		ΙĔ	400 +/ • •
78			204			300
79			477			200
80			477			100
81	324		324			0 +
82						
83						75 78 81 84 87 90 93 96 99 02 05 0
84						YEAR
85						
86						→ Spawn dep. est. ■ Acoustic/trawl est.
87						
88						ANNUAL SURVIVAL
89						
90	364		364			
91	613	l	613			100
92						100
93	538	l	538			90
94	292	!	292			
95						80
96		38) 380			70
97		30	7 307	0		
98		31	1 311	170	PERCENT	60
99		80	2 802	792	U U U	50
2000		10	7 107	107	Ĩ	30
2001		61	2 612	393	1	40
2002	774	51) 774	629		20
2003	448	l	448			30
2004		18	4 184			20
2005	170		5 170	120		
2006	54		54			10
2007	24		24			0 +
2008	. c	I	0			
1EAN:						YEAR
5 year	328	35	352			
year	62					
2008 E	BIOMASS	AGE CC	MPOSITIC	ON		STOCK SUMMARY
						2008 SPAWNER FISHERY SUMMARY
10	00				-	no fishery
	20					
	80				_	DATA QUALITY
۲ z	60				_	fair/poor
PERCENT						
Ň.	40				_	RECENT TREND (5 year)
д,						decreasing
	20				_	·······
4						
						STUCK STATUS (2 year)
	0 ++					STOCK STATUS (2 year) depressed: 3% of 25 yr mean spawning biomass

2008 Washington State Herring Stock Status Report

no data

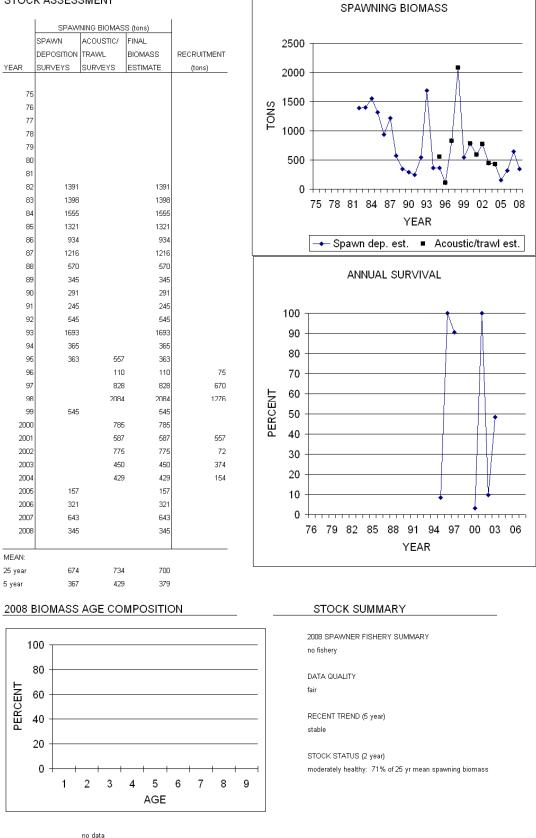

AGE

Port Susan Herring Stock

OVERVIEW

The Port Susan herring stock often deposits significant spawn on rocks and gravel. Outside of Tulalip Bay, where most observed spawn deposition has been located, marine algae normally used by herring as spawning substrate are sparse in the Port Susan area. This behavior makes acoustic/trawl survey assessment the method of choice for this stock, although successful location of prespawner aggregations has been sporadic. Spawning biomass has hovered around 500 tons since a peak of over 2,000 tons in 1998. Additional spawning ground was documented in 2008 in the northwest portion of Port Susan on intertidal salt marsh vegetation, an occurrence not previously reported inside Puget Sound.

SPAWNING GROUND

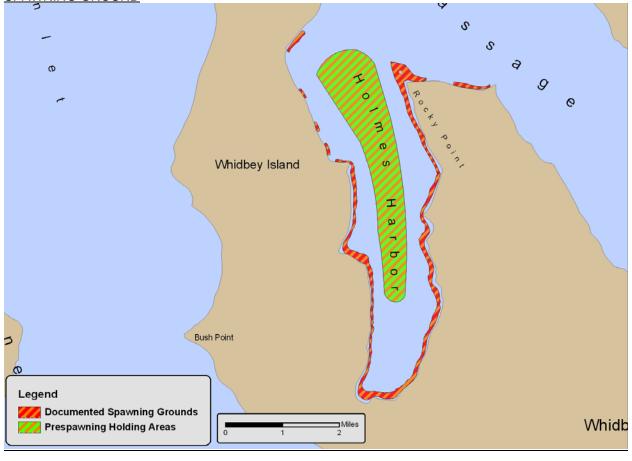

SPAWNING TIMING

1	Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5/6 YEAR OLDS 161mm/168mm/179mm/182mm/185mm (2007)

STOCK STATUS PROFILE for Port Susan Herring Stock

STOCK ASSESSMENT



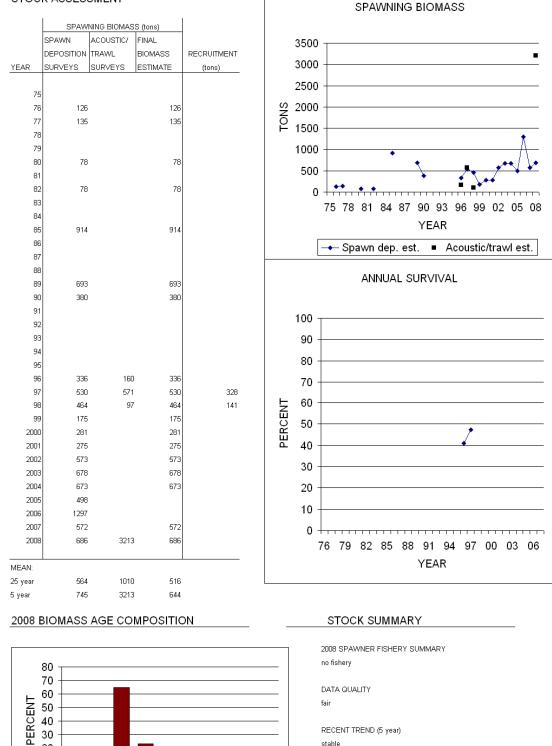
2008 Washington State Herring Stock Status Report

Holmes Harbor Herring Stock

<u>OVERVIEW</u>

Spawning timing for the Holmes Harbor herring stock is later than most Puget Sound stocks, with most activity from early March to early April. Recent spawning biomass is relatively high with a previous five year mean (2004-2008) of 745 tons, compared to a mean spawning biomass of less than 400 tons between 1976 and 2003. Along with the Quilcene Bay stock, this stock was considered to be the largest in Washington waters prior to the start of quantitative surveys in the 1970's, as reported by Chapman et al. (1941), Cleaver and Franett (1946), and Williams (1959). This conclusion was based mainly on fishery observations and landings (brush weir/trap) that reached as high as 358 tons in 1937. Tagging operations on spawning grounds conducted in the 1950's documented recovery of at least one tagged adult fish at Swiftsure Bank off the southwest tip of Vancouver Island in the summer and in early winter reduction fisheries in the southeast Vancouver Island region, suggesting that the Holmes Harbor stock is a migratory stock.

SPAWNING GROUND


SPAWNING TIMING

Jan	Feb	March	April	May	June

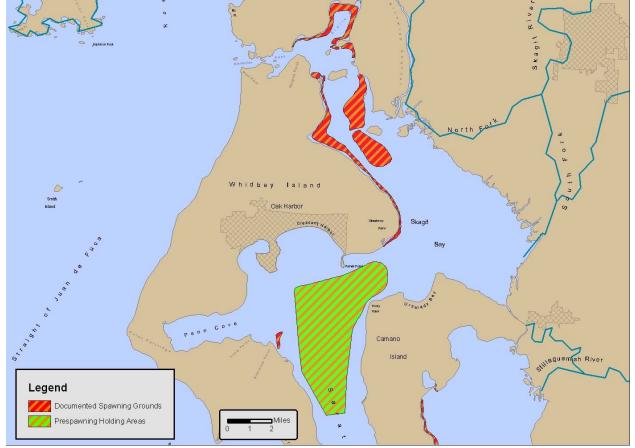
MEAN LENGTH OF 2/3/4/5 YEAR OLDS 137mm/170mm/176mm/190mm (2008)

STOCK STATUS PROFILE for Holmes Harbor Herring Stock

STOCK ASSESSMENT

fair RECENT TREND (5 year) stable

STOCK STATUS (2 year) healthy: 112% of 25 yr mean spawning biomass


AGE

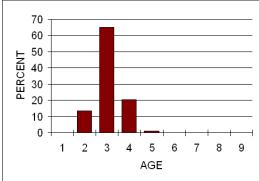
Skagit Bay Herring Stock

OVERVIEW

The Skagit Bay herring stock is currently one of the larger stocks in Puget Sound. Acoustic/trawl surveys have observed large prespawner herring concentrations in the north end of Saratoga Passage. Observed spawn deposition in recent years has primarily been in and near Similk Bay. A recent genetic study (Beacham et al. 2008) demonstrated genetic differentiation between this stock and the Cherry Point stock and a lack of differentiation compared to a sample from the Kilisut Harbor stock. The close proximity to the prespawner holding area and spawning grounds and reasonably similar spawn timing for the Holmes Harbor stock make it likely that intermixing of these two stocks occurs, although spawn timing is typically earlier for the Skagit Bay stock.

SPAWNING GROUND

SPAWNING TIMING


Jan	Feb	March	April	May	June

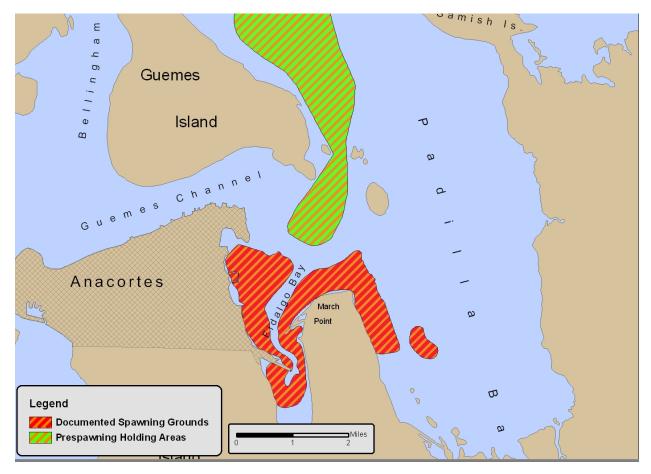
MEAN LENGTH OF 2/3/4/5 YEAR OLDS 141mm/167mm/176mm/183mm (2008)

STOCK STATUS PROFILE for Skagit Bay Herring Stock

STOCK ASSESSMENT

	SPAWN	NING BIOMA:			1		
		ACOUSTIC/	FINAL				
	DEPOSITION		BIOMASS	RECRUITMENT		5000	
			1			4500	
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)		4000	
75						3500	
76			478		S	3000	+
77			227		TONS	2500	A 7
78					ΙĔ	2000	₽ [≠] \/\
79)					1500	• ///
80	453		453			1000	Y ↓↓↓
81						500	1
82	2						••••
83						0	+
84	Ļ						75 78 81 84 87 90 93 96 99 02 05 0
85	5						YEAR
86	ì					Г	→ Spawn dep. est. ■ Acoustic/trawl est.
87			1552		<u> </u>		• opawn dep. est. = Acoustic/trawlest.
88	3 1340		1340				ANNUAL SURVIVAL
89	1						ANNUAL SURVIVAL
90							
91						100 -	
92	2					100	
93						90 -	
94						80 -	
95 96				736			Ţ
97				892		70 -	
98		20:		31	–	60 -	
99			905		PERCENT		
2000		64			RO	50 -	
2001		217		1309	1	40 -	└────────────────────────────
2002	2	221	5 2215	1212			\ / \
2003)	298	3 2983	2517		30 -	
2004	l l	124	5 1245	692		20 -	└──── ↓ / •
2005	i	116	9 1169	462		4.0	· · · · · · · · · · · · · · · · · · ·
2006	i	282	6 2826	2275		10 -	
2007	r	123	6 1236	556		0 -	
2008	}	134	2 1342	1047		-	76 79 82 85 88 91 94 97 00 03 0
MEAN:							YEAR
25 year	1085						
5 year		156	4 1564				
2000 1							STOCK SUMMARY
2008 l	DIOWASS	AGE CO	MPOSITIC		_		STOCK SUMMARY

2008 SPAWNER FISHERY SUMMARY no fishery DATA QUALITY fair RECENT TREND (5 year) stable STOCK STATUS (2 year) healthy: 92% of 25 yr mean spawning biomass


North Puget Sound Herring Stock Profiles

Fidalgo Bay Herring Stock

<u>OVERVIEW</u>

Formerly considered to be a medium-sized north Puget Sound herring stock, the Fidalgo Bay stock has decreased in recent years. Annual spawning biomass estimates have decreased each year since 2001, although the trend for the most recent five years (2004-2008) is not statistically significant (95% confidence level). Compared to the previous 25 year mean spawning biomass, the 2008 status is considered depressed. The proximity of its spawning grounds to oil refinery activities at March Point make its status of particular interest. Spawn deposition takes place at very low densities over the large shallow eelgrass flats that encompass most of the bay. One sample from 1999 was not genetically differentiated from other Puget Sound stocks, except the Cherry Point and Squaxin Pass stocks (Small 2005).

SPAWNING GROUND

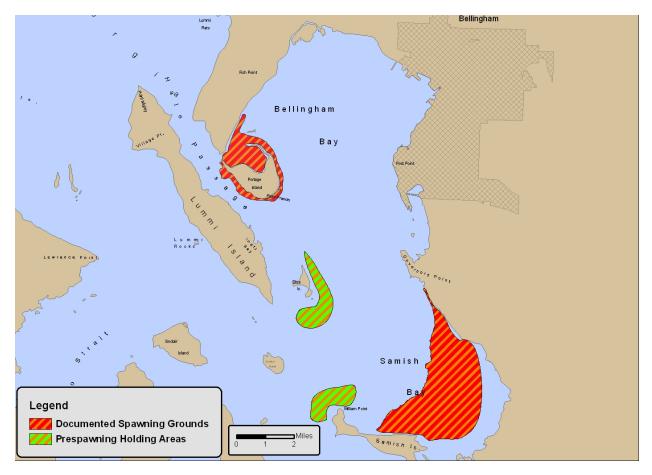
SPAWNING TIMING

Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS 148mm/157mm/177mm/204mm (2003)

STOCK STATUS PROFILE for Fidalgo Bay Herring Stock

STOCK ASSESSMENT

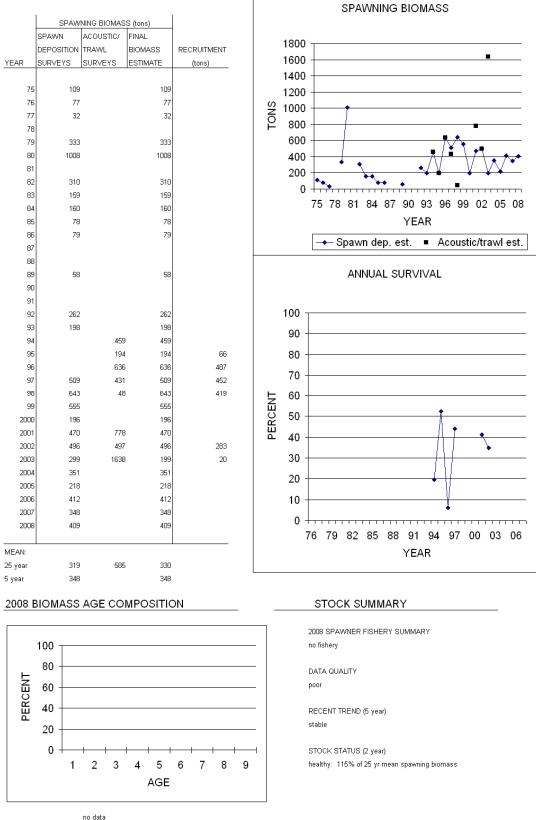

5100	K ASSES	SMENT				SPAWNING BIOMASS
	SPAW	NING BIOMAS	S (tons)			
	SPAWN	ACOUSTIC/	FINAL			0000
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT		2000
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)		1800
						1600
75	i					1400
76	1				ပ	თ 1200 — / 🙀
77					TONS	
78					ΙΎ	
79						
80			276			600
81			456			400
						200
82			182			0 +
83			640			75 78 81 84 87 90 93 96 99 02 05 08
84			742			
85			761			YEAR
86			731			→ Spawn dep. est. ■ Acoustic/trawl est.
87			887			
88	3					
89	I					ANNUAL SURVIVAL
90						
91	1079		1079			
92	1399		1399			100
93	1417	1898	6 1417	1206		00
94	1207	912	2 1207	590		90
95	1173	702	2 1173	882		80
96	590	255	5 590	273		
97		208		800		70
98				680	⊢⊢	⊨ 60
99			1005		PERCENT	
2000					U D	50 <u> </u>
2000				500	<u>н</u>	
2001				737	<u>م</u>	<u>a</u> 40
2002				49		30
				49		
2004			339			20
2005			231			
2006			323			10
2007			159			0 +
2008	156		156			76 79 82 85 88 91 94 97 00 03 06
MEAN:						YEAR
25 year	777					
5 year	242		242			
2008 E	BIOMASS	AGE CO	MPOSITIC	DN	_	STOCK SUMMARY
1	100				-	2008 SPAWNER FISHERY SUMMARY
						no fishery
	80				-	
						DATA QUALITY
E E	60				-	fair
PERCENT	40				_	
Б						RECENT TREND (5 year)
	20				-	stable
	0 +	+ +	+ + +		- -	STOCK STATUS (2 year)
	1	2 3	45	6 7 8 9		depressed: 20% of previous 25 yr mean spawning biomass
			AGE			
1						
Ĺ						
		no data				

Samish/Portage Bay Herring Stock

OVERVIEW

Spawning by this small north Puget Sound stock occurs in both Samish Bay and Portage Bay. The majority of spawning activity in recent years has been observed in Portage Bay. Spawning activity typically occurs from early February to late March. Some of this stock's spawning grounds overlap with those of the later spawning Cherry Point stock on the east side of Hale Passage. It is the only north Puget Sound stock classified as healthy as of 2008.

SPAWNING GROUND

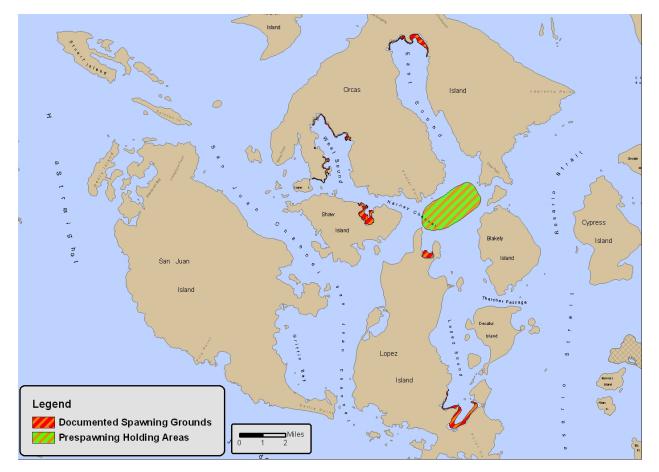

SPAWNING TIMING

Jan	Feb	March	April	May	June

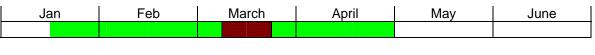
MEAN LENGTH OF 2/3/4/5 YEAR OLDS 146mm/166mm/185mm/192mm (2003)

STOCK STATUS PROFILE for Samish/Portage Bay Herring Stock

STOCK ASSESSMENT

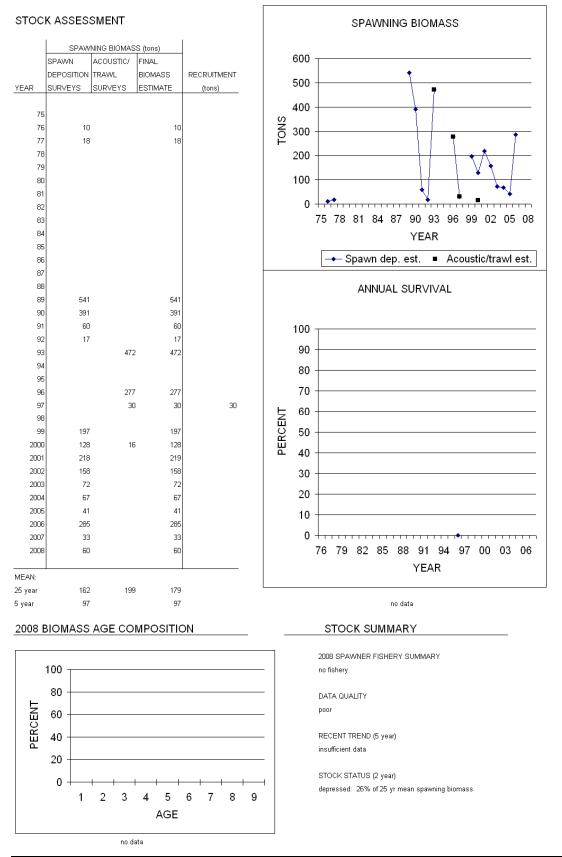


Interior San Juan Islands Herring Stock


<u>OVERVIEW</u>

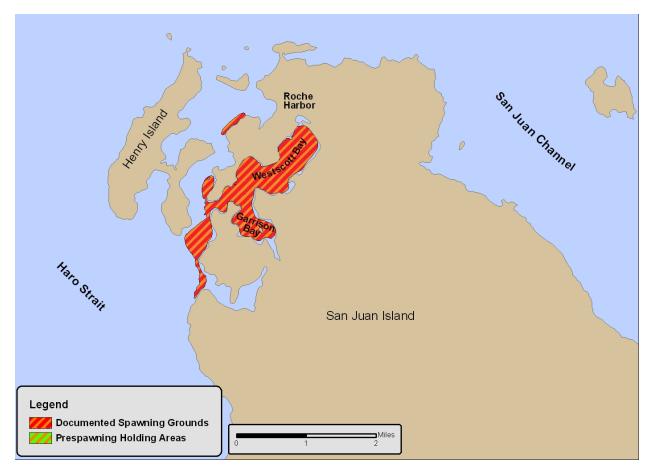
The Interior San Juan Islands herring stock is small with spawning grounds in several separate areas and one known prespawner holding area near Harney Channel. Observed spawn deposition has been mostly in Mud Bay (Lopez Island) and East Sound (Orcas Island) in the last few years. Significant portions of eelgrass beds in Blind Bay previously used for spawning have disappeared. Spawning activity has been documented into late April. Current spawning biomass currently appears to be low, although it should be noted that sampling effort has been sporadic for this stock's spawning grounds.

SPAWNING GROUND



SPAWNING TIMING

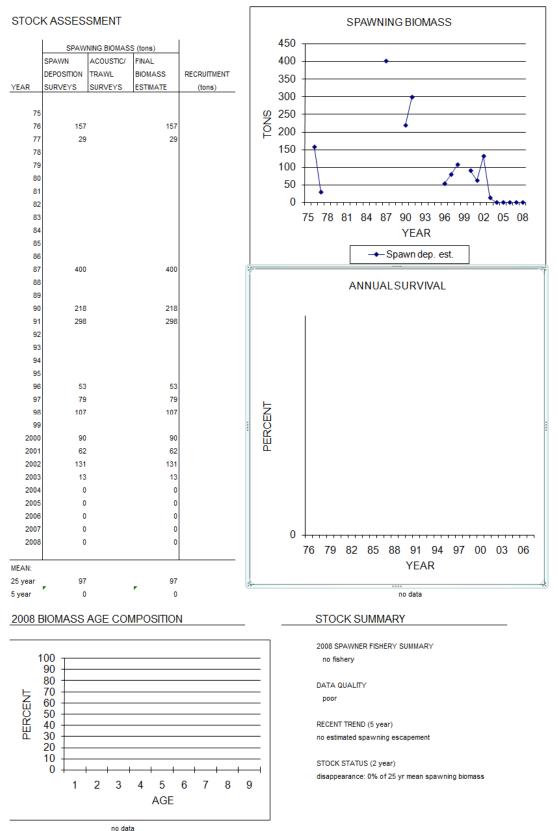
MEAN LENGTH OF 2/3 YEAR OLDS 140mm/154mm (2000)


STOCK STATUS PROFILE for Interior San Juan Islands Herring Stock

Northwest San Juan Island Herring Stock

OVERVIEW

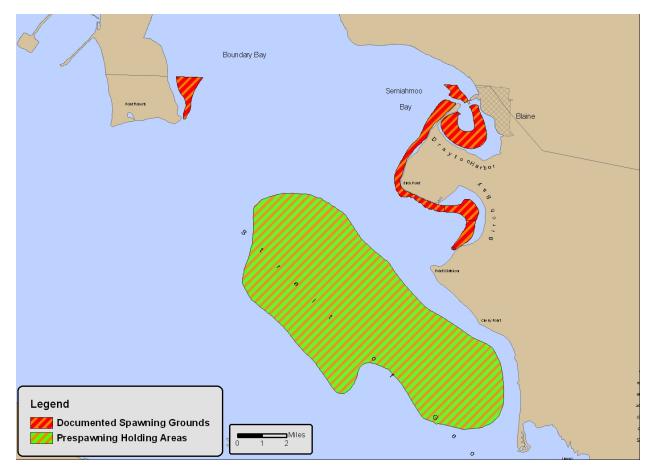
Historically, the Northwest San Juan Island stock is a small stock with spawning grounds primarily in Westcott Bay and Garrison Bay on San Juan Island. Stock distinction from the Interior San Juan Islands stock is based only on geographical separation. A virtually complete disappearance of extensive eelgrass beds for unknown reasons in Westcott and Garrison Bay that was first reported in 2001 has not improved. A shift in spawning location to other eelgrass beds in the vicinity (outside of Westcott and Garrison Bays) has not been documented. Limited spawn deposition survey effort has not documented any spawning activity here since 2003, causing this stock's status as "disappeared". It is possible this stock's spawners have strayed to other spawning populations with similar spawn timing and better spawning habitat as suggested for British Columbia herring (Ware and Tovey 2004).


SPAWNING GROUND

SPAWNING TIMING

Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS No data



Semiahmoo Bay Herring Stock

<u>OVERVIEW</u>

The Semiahmoo Bay herring stock is the northernmost stock in Washington. The stock's documented spawning grounds overlap with those of the spring spawning Cherry Point stock. Biological characteristics such as growth rates, and spawning behavior such as time of spawning, differ markedly between the two stocks on a consistent basis. Additionally, two studies (Small et al. 2005, Mitchell 2006) examining DNA microsatellites concluded this stock to be genetically differentiated from Cherry Point herring without significant observed genetic divergence from other sampled Puget Sound stocks. Spawning biomass for the last years has averaged 912 tons and the stock is considered to be moderately healthy.

SPAWNING GROUND

SPAWNING TIMING

Jan	Feb	March	April	May	June

<u>MEAN LENGTH OF 2/3/4/5/6 YEAR OLDS</u> 142mm/161mm/172mm/191mm/187mm (2005)

STOCK STATUS PROFILE for Semiahmoo Bay Herring Stock

Γ

STOCK ASSESSMENT

5100	K ASSES	SMENT					SPAWNING BIOMASS
	SPAW	NING BIOMAS	SS (tons)				
	SPAWN	ACOUSTIC/	FINAL				
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT		4000	-
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)		3500	-
						3000	-
75			772			2500	_
76			321		S		
77			634		TONS	2000	
78						1500	
79						1000	
80			1000				
81 82			1008 1389			500	
83			874			0	
84			772				75 78 81 84 87 90 93 96 99 02 05 08
85			2325				YEAR
86			1464				
87							→ Spawn dep. est. ■ Acoustic/trawl est.
88	1965		1965				
89	1701		1701	978			ANNUAL SURVIVAL
90	1930	1909	9 1930	1573			
91	2061	2655	5 2061	860			
92	1501	3689	9 1501	636		100 ·	
93	1902	2416	6 1902	1554		~~	
94	1389	1168	6 1389	676		90	
95			1245			80	
96		1219				70	
97				465		70 ·	
98				731	Ξ	60	-
99 2000			868 926		PERCENT	50 ·	
2000	1098		926 1098		Ш Ш		•
2001			1030		٩	40	λ
2002			1012			30	
2004			629				
2005			870			20	¥¥ /
2006			1277			10	
2007	1124		1124				•
2008	662		662			0	+
							76 79 82 85 88 91 94 97 00 03 06
MEAN:							YEAR
25 year	1276	i 1658	3 1274				
5 year	912		912				
2008 8	BIOMASS	AGE CO	MPOSITIC	ON			STOCK SUMMARY
	100						2008 SPAWNER FISHERY SUMMARY
	100				-		no fishery
	80				_		DATA QUALITY
⊑							fair
PERCENT	60				-		
N	40				_		RECENT TREND (5 year)
							stable
	20				-		
	o 🗕	I		1 1			STOCK STATUS (2 year)
_							moderately healthy: 70% of 25 yr mean spawning biomass
1 2 3 4 5 6 7 8 9							
			AGE				
no data							

Cherry Point Herring Stock

<u>OVERVIEW</u>

The Cherry Point herring stock is unique in Washington State because of its exceptionally late spawning timing. Cherry Point fish also exhibit relatively rapid growth rate after age 1 and are generally considered to be a "migratory" stock, probably moving to summer offshore feeding areas off of the continental shelf. Washington's largest herring stock from the 1970s until the mid-1990s, its abundance has decreased dramatically and it continues to be in critical condition. Two status reviews by the federal government (Stout et al. 2001, Gustafson et al. 2006) concluded that the Cherry Point stock did not meet Endangered Species Act criteria to be considered a distinct population segment and it was not listed as endangered or threatened; it was considered to be part of a metapopulation that includes all herring populations in the Strait of Georgia and Puget Sound. However, as discussed in a previous section of this report, several recent genetic studies examining DNA microsatellites have demonstrated the Cherry Point stock to be genetically distinct from British Columbia and other Puget Sound stocks sampled to date, justifying its management as a discrete stock. A decrease in available spawning habitat has not been documented for this stock's spawning grounds.

SPAWNING GROUND

MEAN LENGTH OF 3/4 YEAR OLDS 173mm/183mm (2008)

STOCK STATUS PROFILE for Cherry Point Herring Stock

STOCK ASSESSMENT

0100	K ASSES				SPAWNING BIOMASS				
	SPAW	NING BIOMAS	SS (tons)						
	SPAWN	ACOUSTIC/	FINAL		16000				
	DEPOSITION	TRAWL	BIOMASS	RECRUITMENT					
YEAR	SURVEYS	SURVEYS	ESTIMATE	(tons)	14000				
					12000				
73	14998		14998						
74			13963						
75			10337	1910					
78				1159					
77				3009	6000				
78				3541					
79				1129	4000				
80				3675	2000				
81				397	· · · · · · · · · · · · · · · · · · ·				
82				2043	0 +++++++++++++++++++++++++++++++++++++				
83				1385	73 76 79 82 85 88 91 94 97 00 03 06				
84				1001 2928	YEAR				
85 86				2928 3295					
87				1155	→ Spawn dep. est. ■ Acoustic/trawl est.				
88				2080					
89				2497	ANNUAL SURVIVAL				
90				1901					
9				1141					
92				1991					
93				3434	90				
94				4076					
- 95				1204	80				
98				772	70				
97	1574	1400) 1574	645	10				
98	3 1322	1502	2 1322	984					
99	1266	1052	2 1266	890					
2000	808	436	6 808	560					
2001	1241	1146	6 1241	680					
2002	2 1330	450) 1330	974					
2003	1611	555	5 1611	998	30				
2004	1734	981	1734	22					
2005	5 2010	1565	5 2010	1784					
2008	2216	1102	2 2216	2029	10				
2007				1515	↓ ↓ ↓				
2008	1352		1352	952					
					74 77 80 83 86 89 92 95 98 01 04				
MEAN: 25 year	3182	2606	3182		YEAR				
5 γear	1896								
5 year	1000	1021	1000						
2008	BIOMASS	AGE CO	MPOSITIC	N	STOCK SUMMARY				
					<u> </u>				
6	30				2008 SPAWNER FISHERY SUMMARY				
	70				no fishery				
	50 				—				
L S	50 +				DATA QUALITY				
22 Z	0				good				
	30				—				
4	20				RECENT TREND (5 year)				
1 1	0				increasing				

RECENT TREND (5 year) increasing

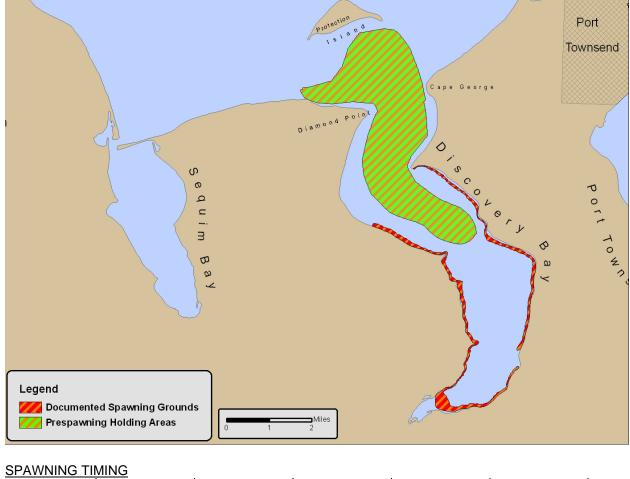
STOCK STATUS (2 year) critical: 55% of 25 yr mean spawning biomass

5 6 7 8 9

AGE

34

0

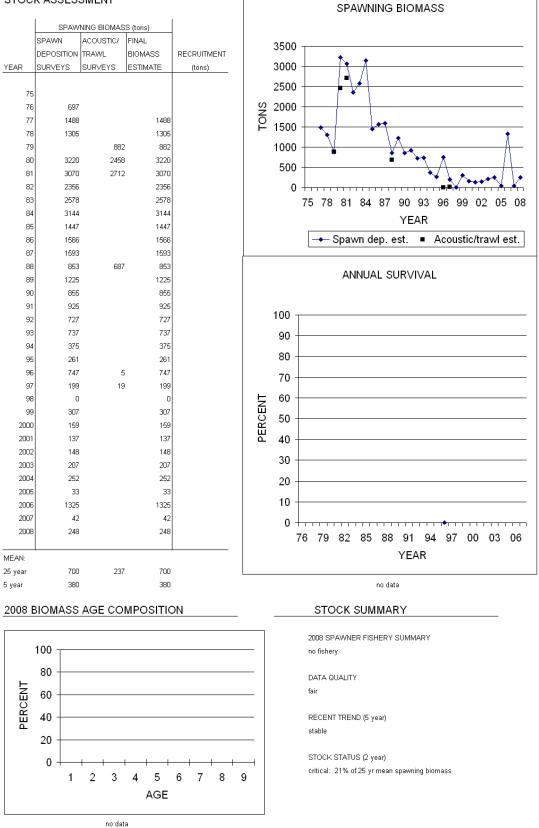

1 2

Strait of Juan De Fuca Herring Stock Profiles

Discovery Bay Herring Stock

OVERVIEW

The Discovery Bay herring stock is traditionally the major Strait of Juan de Fuca stock. Its abundance has fluctuated dramatically since the early 1900's, when significant fishery landings suggested sizable spawning biomass; followed by decreased fishery activity and assumed abundance decline in the 1930's; a return to "relatively high" abundance levels during the 1940's and 1950's (Williams 1959); documented high abundance (peak of 3,220 tons in 1980) in the early 1980's; and generally very low abundance since 1990. The stock has no known fishery interceptions and its spawning grounds are presumed to be among the most pristine in Washington. Increased pinniped predation and/or movement to other spawning grounds with similar spawn timing are potential causes for biomass decline. Primarily due to the proximity of its spawning grounds to offshore feeding grounds, this stock has been suggested to be migratory.

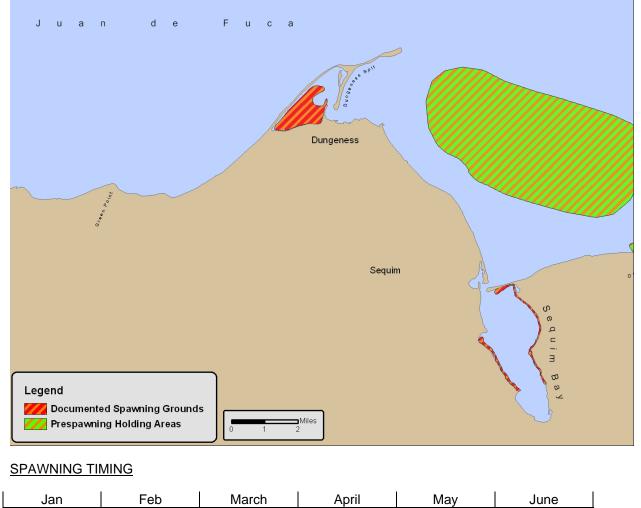

SPAWNING GROUND

Jan Feb March April May June

MEAN LENGTH OF 2/3/4 YEAR OLDS 143mm/168mm/204mm (1997)

STOCK STATUS PROFILE for Discovery Bay Herring Stock

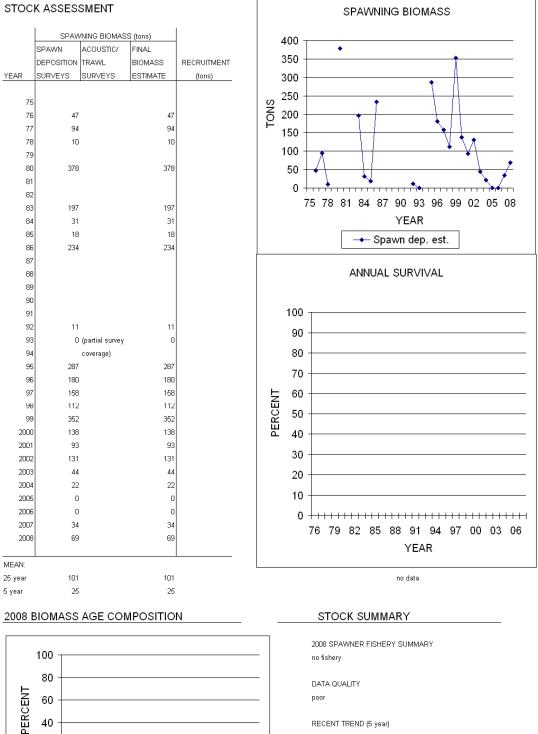
STOCK ASSESSMENT



Dungeness/Sequim Bay Herring Stock

OVERVIEW

The Dungeness Bay portion of this small stock's spawning grounds hosts most, if not all, of its spawning activity. These spawning grounds are the westernmost documented grounds used by any Puget Sound stock. Despite the presence of abundant marine vegetation preferred for spawning in Sequim Bay, only one small spawning event has been documented there since 1994. Observed spawning activity in Sequim Bay was highest in the early 1980's when peak spawning biomass was documented for the nearby Discovery Bay stock, suggesting a "spillover" effect to Sequim Bay when the Discovery Bay population is at a high level of abundance. Documented spawn timing is slightly earlier for Dungeness Bay compared to Sequim Bay and Discovery Bay, again suggesting a link between those two spawning grounds. A decrease in available spawning substrate has been observed in parts of Dungeness Bay in recent years, but is not considered to be limiting abundance.


SPAWNING GROUND

MEAN LENGTH OF 2/3/4/5 YEAR OLDS No data

STOCK STATUS PROFILE for Dungeness/Sequim Bay Herring Stock

STOCK ASSESSMENT

STOCK STATUS (2 year)

decreasing

depressed: 51% of 25 yr mean spawning biomass

AGE

8 9

7

3 4 5 6

no data

20

0

1 2

Puget Sound Herring Stock Status Summary

The table on the next page includes individual, regional, and Puget Sound cumulative stock status summaries since 1994 based on two year mean spawning biomass estimates and status classification criteria described on page 11 of this report. Obviously, the value of a stock-by-stock evaluation is affected greatly by stock discreteness.

The discreteness of the Cherry Point herring stock has been repeatedly demonstrated by recent genetic studies detailed previously in this report. Evaluating abundance trends of the Squaxin Pass stock individually is also generally supported by these studies, although not as clearly as for the Cherry Point stock. The discreteness of other Puget Sound herring stocks is less certain. However, the lack of definitive genetic evidence does not preclude the existence of additional individual stock discreteness among Puget Sound herring. Further genetic studies are recommended to attempt to elucidate the stock structure of Puget Sound herring.

Therefore, if considerable intermixing/gene flow with numerous other "stocks" occurs, the individual stock statuses presented below may be of limited importance. It may be more useful to examine abundance levels and trends on a regional or sub-regional basis and also to consider genetic findings to date (e.g. separate the Cherry Point and Squaxin Pass stocks from their respective regions).

For the 2007-08 period, less than half (47%) of Puget Sound herring stocks are classified as healthy or moderately healthy. This is the lowest percentage of stocks meeting these criteria since development of the stock status summary in 1994, although very similar to the status breakdown for the previous two-year periods (2003-04 and 2005-06). No spawning activity has been documented for the N.W. San Juan Island stock for five consecutive seasons and it is classified as "disappearance". If possible, sampling effort should be continued to determine if/when a "recolonization" of spawning herring similar as that described in British Columbia areas (Ware and Tovey 2004) occurs there. Quilcene Bay, Holmes Harbor, and Skagit Bay currently appear to be in the healthiest condition of individual Puget Sound herring stocks.

The Cherry Point herring stock status continues to be considered critical. After a low estimated spawning biomass of 808 tons in 2000, followed by a steady, although moderate, increase through 2006, spawning biomass decreased for both 2007 and 2008. A lack of older spawning fish sampled from acoustic/trawl surveys of the Cherry Point stock continues to be a concern.

The spawning biomass for all Puget Sound stocks combined, excluding the Cherry Point stock, would be considered moderately healthy compared to the previous 25-year sum of mean spawning biomasses; the 2007-08 mean cumulative spawning biomass for those stocks is 11,656 tons and the previous 25-year sum of means is 16,263 tons. For the 2005-06 period, this grouping of stocks was also considered to be moderately healthy.

The other Puget Sound herring stock that appears to be genetically differentiated, Squaxin Pass, is considered to be healthy at this time. The relationship of the spawning fish in Carr Inlet observed in 2008 to the prespawning aggregation in Case Inlet is not known. Increased

assessment surveys and further genetic sampling will hopefully clarify this issue and improve assessment of the Squaxin Pass stock.

The spawning biomass for all Puget Sound stocks combined, excluding both the Cherry Point and Squaxin Pass stocks, would be considered moderately healthy compared to the previous 25-year sum of mean spawning biomasses for 2007-08 after a healthy status classification for 2005-06. Regionally, south/central Puget Sound stocks combined, excluding Squaxin Pass, are considered healthy for 2005-06 and moderately healthy for 2007-08, reflecting a general high level of spawning biomass for this grouping in 2006.

The regional status for North Puget Sound herring stocks, excluding the Cherry Point stock, is depressed. Spawning biomass for the Fidalgo Bay stock, in particular, has declined significantly since 1999. The Portage/Samish Bay stock is the only North Puget Sound stock currently classified as healthy.

The Strait of Juan de Fuca region's status has been generally classified as critical since 1994, primarily due to the estimated spawning biomass of the Discovery Bay stock. An unexplained one-year significant increase in abundance was observed in 2006, followed by a dramatic decrease in 2007 and 2008. Such large year-to-year fluctuation brings into question the discreteness of this stock.

STOCK STATUS - Describes a stock's current condition based primarily on recent (previous 2 year mean) abundance compared to long-term (previous 25 year mean) abundance.

Stock criteria such as survival, recruitment, age composition, and spawning ground habitat condition are also considered.

HEALTHY - A stock with recent two year mean abundance above or within 10% of the 25 year mean.

MODERATELY HEALTHY - A stock with recent two year mean abundance within 30% of the 25 year mean, and/or with high dependence on recruitment.

DEPRESSED - A stock with recent abundance well below the long term mean, but not so low that permanent damage to the stock is likely (i.e., recruitment failure).

CRITICAL - A stock with recent abundance so low that permanent damage to the stock is likely or has already occurred (i.e., recruitment failure).

DISAPPEARANCE - A stock which can no longer be found in a formerly consistently utilized spawning ground.

UNKNOWN - Insufficient assessment data to identify stock status with confidence.

Region

Region Stock	2008	2006	2004	2002	2000	1998	1996	1994
South-Central Puget Sound	HEALTHY	HEALTHY	HEALTHY	HEALTHY	HEALTHY	HEALTHY	HEALTHY	HEALTHY
Squaxin Pass Wollochet Bay	HEALTHY	MOD. HEALTHY UNKNOWN	HEALTHY UNKNOWN	HEALTHY UNKNOWN	HEALTHY	MOD. HEALTHY	MOD. HEALTHY	MOD. HEALTHY
Quartermaster Harbor Port Orchard-Madison South Hood Canal Quilcene Bay Port Gamble Kilisut Harbor Port Susan Holmes Harbor Skagit Bay	DEPRESSED HEALTHY MOD. HEALTHY HEALTHY DEPRESSED DEPRESSED MOD. HEALTHY HEALTHY HEALTHY	MOD. HEALTHY HEALTHY HEALTHY HEALTHY DEPRESSED DEPRESSED HEALTHY HEALTHY	MOD. HEALTHY MOD. HEALTHY MOD. HEALTHY HEALTHY DEPRESSED MOD. HEALTHY DEPRESSED HEALTHY HEALTHY	MOD. HEALTHY HEALTHY MOD. HEALTHY HEALTHY MOD. HEALTHY HEALTHY HEALTHY HEALTHY HEALTHY	HEALTHY HEALTHY HEALTHY	HEALTHY DEPRESSED MOD. HEALTHY HEALTHY DEPRESSED MOD. HEALTHY HEALTHY HEALTHY MOD. HEALTHY	HEALTHY DEPRESSED UNKNOWN HEALTHY HEALTHY UNKNOWN DEPRESSED UNKNOWN HEALTHY	HEALTHY DEPRESSED UNKNOWN HEALTHY HEALTHY MOD. HEALTHY UNKNOWN UNKNOWN
North Puget Sound	DEPRESSED	DEPRESSED	DEPRESSED	DEPRESSED	DEPRESSED	DEPRESSED	MOD. HEALTHY	HEALTHY
Fidalgo Bay Samish/Portage Bay Interior San Juan Is. N.W. San Juan Is. Semiahmoo Bay Cherry Point	DEPRESSED HEALTHY DEPRESSED DISAPPEARANCE MOD. HEALTHY CRITICAL	DEPRESSED HEALTHY MOD. HEALTHY DEPRESSED MOD. HEALTHY CRITICAL	CRITICAL	HEALTHY HEALTHY MOD. HEALTHY DEPRESSED MOD. HEALTHY CRITICAL	UNKNOWN	HEALTHY HEALTHY UNKNOWN DEPRESSED DEPRESSED CRITICAL	MOD. HEALTHY HEALTHY UNKNOWN UNKNOWN HEALTHY DEPRESSED	MOD. HEALTHY MOD. HEALTHY UNKNOWN UNKNOWN HEALTHY MOD. HEALTHY
Strait of Juan de Fuca	CRITICAL	DEPRESSED	CRITICAL	CRITICAL	CRITICAL	CRITICAL	CRITICAL	CRITICAL
Discovery Bay Dungeness/Sequim Bay	CRITICAL DEPRESSED	DEPRESSED DEPRESSED	CRITICAL DEPRESSED	CRITICAL MOD. HEALTHY	CRITICAL HEALTHY	CRITICAL HEALTHY	CRITICAL HEALTHY	CRITICAL UNKNOWN
Puget Sound Combined	MOD. HEALTHY	HEALTHY	MOD. HEALTHY	HEALTHY	MOD. HEALTHY	MOD. HEALTHY	MOD. HEALTHY	HEALTHY
Individual Stock Comparison HEALTHY MOD. HEALTHY DEPRESSED CRITICAL DISAPPEARANCE UNKNOWN	2008 6 stocks 3 stocks 6 stocks 2 stocks 1 stock 1 stock 47% Healthy or Mod. Healthy	2006 6 stocks 4 stocks 7 stocks 1 stock 0 stocks 1 stock 56% Healthy or Mod. Healthy	2004 4 stocks 5 stocks 6 stocks 3 stocks 0 stocks 1 stock 50% Healthy or Mod. Healthy	2002 8 stocks 7 stocks 1 stock 2 stocks 0 stocks 1 stock 83% Healthy or Mod. Healthy	2000 10 stocks 2 stocks 3 stocks 2 stocks 0 stocks 1 stock 71% Healthy or Mod. Healthy	1998 7 stocks 3 stocks 5 stocks 2 stocks 0 stocks 1 stock 59% Healthy or Mod. Healthy	1996 7 stocks 2 stocks 3 stocks 1 stock 0 stocks 5 stocks 69% Healthy or Mod. Healthy	1994 4 stocks 5 stocks 1 stock 1 stock 0 stocks 7 stocks 7 stocks 82% Healthy or Mod. Healthy

Puget Sound Herring Spawning Biomass Estimates, 1973-2008

The herring spawning biomass estimates for individual stocks previously presented in the individual stock profiles demonstrate the large annual fluctuations indicated from assessment surveys conducted since 1973. Pacific herring abundance, as well as for other forage fishes, has a tendency to fluctuate greatly (Bargmann 1998). As discussed in previous sections, it is likely that there is considerable gene flow between various Puget Sound herring stocks. Therefore, grouping stocks by region that have not demonstrated genetic divergence (e.g. Cherry Point and Squaxin Pass stocks) may be the most meaningful way to attempt to determine abundance trends and comparisons for the Puget Sound herring resource.

The precipitous decline of the Cherry Point herring stock has been obvious and well documented (Fig. 1-3). The genetic divergence of this stock has been repeatedly demonstrated and any analysis of abundance trends should consider other Puget Sound herring stocks to be discrete from the Cherry Point stock. The cumulative spawning biomass of all other Puget Sound herring stocks has not exhibited a decrease similar to the Cherry Point stock, fluctuating between about 10,000 and 16,000 tons (Fig. 3).

The south/central Puget Sound combined stock spawning biomass has exhibited a general increasing trend since 1997 (Fig. 1). However, between 1976 and 1996, only the spawning biomass for the 10-12 larger Puget Sound stocks was estimated annually, with the remaining smaller stocks surveyed on a rotational basis. Other than the Cherry Point stock, very few Puget Sound herring stocks were assessed prior to 1976. The increased sampling effort since 1996 suggests an exaggeratedly high level of cumulative spawning abundance for the south/central Puget Sound region in particular.

To account for the lack of sampling effort in a given year the historical (1973-2008) mean estimated spawning biomass for a stock can be assumed. Figure 2-4 assume the historical mean if a stock was not sampled. The south/central Puget Sound region's cumulative spawning biomass has been relatively high (approx. 10,000 tons) since the late 1990's and is comparable to estimated abundance in the late 1970's and 1980's.

The North Puget Sound region herring spawning biomass, excluding the Cherry Point stock, is currently at a low level of abundance, following a cumulative peak observed in the 1990's (Fig. 1, 2 and 4). The Portage Bay/Samish Bay stock is the only stock in this region whose abundance higher than the historical average in recent years.

The cumulative estimated herring spawning biomass for the herring stocks in the Strait of Juan de Fuca region continues to be very low compared to the peak period observed in the early 1980's. The Discovery Bay stock had an unexplained significant one-year increase in 2006, casting doubt on the amount of natal homing and fidelity for this stock.

Although not as obvious as for the Cherry Point stock, it appears possible that the Squaxin Pass herring stock is also genetically discrete from other populations. The reported estimated

spawning biomass for the Squaxin Pass stock has fluctuated drastically and recent spawning biomass is relatively high for this stock (Fig. 4). The years of extremely low reported spawning biomass (e.g. less than 150 tons in 1977-79 and 1997-98) were generally based on spawn deposition surveys, which likely underestimated abundance for this stock as described previously in its stock profile.

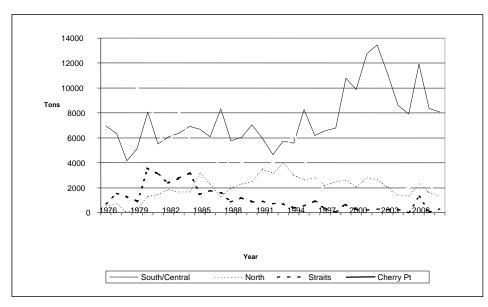


Figure 1. Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Cherry Point stock, 1976-2008 (Sampled stocks only included in figure).

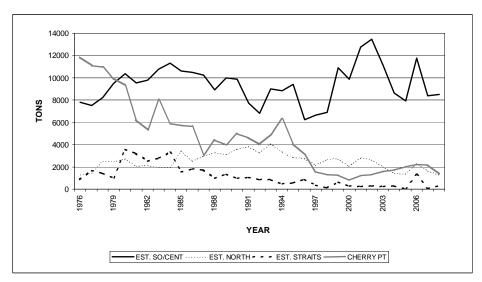


Figure 2. Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Cherry Point stock, 1976-2008 (historical mean assumed if stock not sampled).

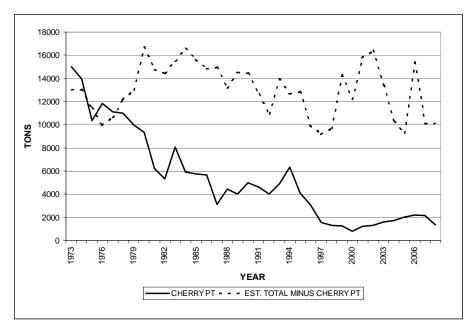


Figure 3. Puget Sound Herring Cumulative Spawning Biomass Estimates, Cherry Point stock compared to all other stocks combined, 1973-2008 (historical mean assumed if stock not sampled).

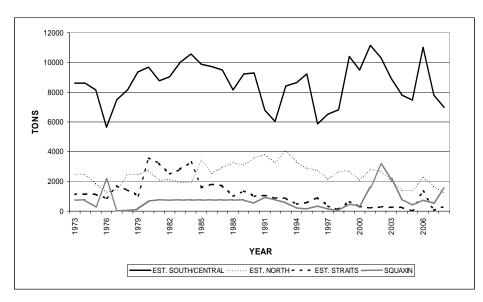


Figure 4. Puget Sound Herring Cumulative Spawning Biomass Estimates by Region and Squaxin Pass stock, 1973-2008 (historical mean assumed if stock not sampled).

Summary of Puget Sound Herring Fisheries

Commercial herring fisheries in Puget Sound have experienced several major shifts since the start of the last century as described in detail by Trumble (1983) and Williams (1959).

Commercial herring fisheries in the early 1900s harvested herring mainly for export, a market that collapsed soon after World War I. During this time purse seines, drag seines, and traps targeted herring with most of the catch coming from Hale Pass (north Puget Sound), Holmes Harbor, Birch Bay, Poulsbo, and Discovery Bay.

From the 1920s through the 1940s the major portion of herring landings were used as bait for commercial halibut, crab, and shark fisheries. Herring traps accounted for much of the landings beginning in the 1920s. Traps were typically located adjacent to or near spawning grounds to intercept adult fish migrating to and from spawning areas. The most successful trap sites were the southwest shore of Holmes Harbor and at Point Whitney near Quilcene Bay in Hood Canal. Total reported herring landings through the 1940s ranged from a low of 36 tons in 1942 to a high of 1,311 tons in 1926 (Chapman et al. 1941 and Williams 1959).

By the early 1950s, commercial herring fishing emphasis in Puget Sound shifted again to primarily supply bait to growing recreational salmon fisheries. Changing market conditions and trap location restrictions in 1937 decreased the number of operational herring traps to one (in Holmes Harbor) by 1947 and led to a gradual reduction in trap landings, the last of which occurred in 1971.

The next shift in the Puget Sound herring fishery happened in 1957 when the reduction of herring to oil and meal was authorized. This led to a sizable fishery in north Puget Sound, with landings from 1,500 to 3,500 tons. This fishery was phased out in the early 1980s due to concerns about potential effects on local herring stock abundance.

In 1972, a sac-roe fishery targeting the Cherry Point stock began. Landings in this treaty and non-treaty fishery topped 4,000 tons in 1974. Declines in the north Puget Sound herring stocks, particularly the Cherry Point stock, led to the closure of both the reduction and sac-roe fisheries by the mid-1980s. In 1988, a non-tribal spawn-on-kelp and treaty sac-roe fisheries were resumed on the Cherry Point stock. Another decline in Cherry Point stock abundance in the mid-1990s again closed this fishery and has remained closed to date. A minimum spawning biomass of 3,200 tons for the Cherry Point stock is currently required before harvest is considered.

The only current commercial herring fishery operating in Puget Sound provides bait for sport salmon and groundfish fisheries. Fishing activity is primarily in south and central Puget Sound and mostly targets juvenile herring assumed to be an aggregate of stocks within the region. Most of the harvest is taken by non-tribal fishers using relatively small (maximum length of 200 feet) lampara seines. The size of annual landings by this fishery are generally determined by market conditions, which are heavily influenced by the length of recreational salmon seasons. Similarly, Williams (1959) and Chapman et al. (1941) reported that herring landings are affected most by variability of fishing effort and that annual catch figures are not a reliable indicator of herring abundance. It is also likely that periodic reports of a lack of "plug" herring (i.e. age 1+ or older)

by commercial fishers inside Puget Sound is often an indication of out-migration to offshore feeding grounds.

Annual landings by the herring sport bait fishery for the last ten years (1998-2007) have averaged 387 tons, ranging from a low of 222 tons in 2006 to a high of 592 tons in 2002. Preliminary reported landings for 2008 are approximately 330 tons. The annual maximum harvest guideline is set at 10% of average adult biomass in the south/central Puget Sound region, which has averaged more than 10,000 tons for the last ten years. Landings for 1998-2007 were well below the harvest guideline, ranging from 2% to 6% of the sum of mean adult spawning biomass estimates for south/central Puget Sound stocks for the same time period.

In general, the results of genetic studies to date also support current management of the commercial herring bait fishery, which operates on a maximum harvest guideline based on regional cumulative spawning biomass estimates. Bait fishery harvest is primarily of juvenile fish that are presumed to consist of mixed stocks (Trumble 1983).

Seasonal gear closures of documented spawning grounds are in place to protect spawning adult herring from harvest by the commercial bait fishery. Additionally, fishing is not allowed in north Puget Sound or near Discovery Bay to prevent the harvest of Cherry Point and Discovery Bay herring, respectively. Hood Canal has also been closed since 2004 to all commercial herring fishing due to concerns of the impacts of low dissolved oxygen on herring abundance, although this closure was not based on observed changes in adult spawning biomass estimates of Hood Canal area herring stocks.

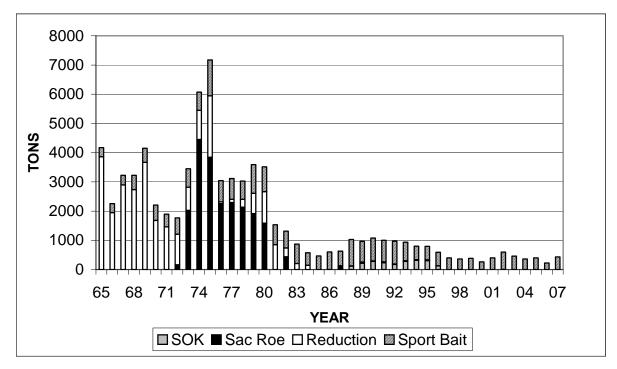


Figure 5. Puget Sound Herring Landings by Fishery Type, 1965-2007.

The abundance of Puget Sound herring stocks is impacted significantly by mortality rates. Mortality can be attributed to two types: fishing and natural mortality (all causes other than human harvest).

Fish survival and mortality are often expressed in terms of rates or percentages. The survival rate is the number of fish alive after a specified time (usually yearly), divided by the initial number. The mortality rate, based on the number of fish not surviving, is equal to 1 minus the survival rate (e.g., an annual survival rate of 35% would produce an annual mortality rate of 65%). Adult herring mortality rates of 30-40% are considered typical for herring worldwide (Lemberg et al. 1997).

Adult herring mortality and survival has been estimated for the Cherry Point stock since 1976. Additional stocks were included in mortality estimates beginning in 1987 when acoustic/trawl survey effort was increased. Figure 6 shows estimates of annual tonnages of herring in Puget Sound determined by natural mortality/survival rates, fishery harvest, and cumulative spawning biomass. The mortality rate estimate used includes all available results for that year (Cherry Point stock only prior to 1987; as many as 14 individual stock estimates since 1987). It is assumed that the cumulative spawner biomass estimate is reflective of total spawner biomass and that complete discreteness exists between sampled stocks. However, as mentioned in previous sections, this assumption may be flawed.

The annual mortality rate estimate for the Cherry Point herring stock has increased from a range of 20-40% in the late 1970s to an average of 68% since 1990. The mean estimated annual natural mortality rate for other sampled stocks since 1990 has averaged 72%; again, high for herring populations. Fishing mortality since 1997 has averaged about 4% of estimated natural mortality.

While significant gene flow between different stocks would affect the accuracy of calculated mortality rates, there is no question that there has been a decrease in the mean and median age (and size) of sampled adult herring in Puget Sound. Relatively good recruitment has sustained most stocks despite the high natural mortality observed.

Potential causes of increased natural mortality include predation, disease, and climatic changes. NMFS (1997) estimated that the harbor seal (*Phoca vitulina*) population in all Washington waters increased 7.7% annually between 1978 and 1993 and the harbor seal population in inland waters of Washington more than doubled from 7,380 in 1983 to 15,634 in 1993 (WDFW and National Marine Mammal Laboratory data reported by West 1997). Herring are among the primary pinniped prey species in Washington (Schmitt et al. 1995, Lance and Jeffries 2007) and southern B.C. waters (Olesiuk 1990).

Herring in Puget Sound and throughout the eastern North Pacific are impacted by at least three pathogens (*Ichthyophonus hoferi*, viral hemorrhagic septicemia virus, and erythrocytic necrosis virus) that exert population-level effects through different epizootiological mechanisms.

Ichthyophonus hoferi is an internal Mesomycetozoan parasite (Mendoza et al. 2002) that currently occurs in high prevalences in herring populations throughout the eastern North Pacific. Recurring large scale epizootics of ichthyophoniasis occur in Atlantic herring populations, often resulting in massive mortalities, population crashes, and unmarketable herring product (reviewed in McVicar 1999). Ichthyophonus surveillances in prespawner Puget Sound herring have been performed annually since 2000, and annual infection prevalence is typically 20-55% (Hershberger et al. 2002, Hershberger and Stick unpublished data). An interesting outlier has consistently occurred in the Squaxin Pass herring stock, where prevalence is typically around 5%, supporting the hypothesis that this population is likely the most resident of all the Puget Sound herring populations because *Ichthyophonus* exposures and subsequent infections likely occur in the Straits or coastal shelf. Among the metapopulation of herring in Puget Sound, Ichthyophonus prevalence increases with herring age, ranging from 12% among juveniles to 55% among the oldest adults (Hershberger et al. 2002). Recent studies indicate that Ichthyophonusinfected fish demonstrate decreased swimming performance (Kocan et al. 2006) and infected herring are preferentially selected by salmonid and cottid predators (Vollset et al. in preparation). These epidemiological data indicate that direct and indirect mortality from ichthyophoniasis may contribute to the disappearance of the older herring age cohorts in Puget Sound and account for observed age structure truncation among the Puget Sound herring stocks.

Viral hemorrhagic septicemia virus (VHSV) is a highly virulent rhabdovirus of marine forage fishes in the eastern North Pacific including herring (Kocan et al. 1997). Capture and confinement of wild Puget Sound herring into laboratory tanks or net pens used for a SOK fishery often results in initiation of VHS epizootics among the confined cohorts (Hershberger et al. 1999). Additionally, large scale VHS epizootics repeatedly occur among wild, free-ranging herring in British Columbia and Alaska. A combination of disease from VHS and *Ichthyophonus* represents a leading hypothesis accounting for the crash and failed recovery of Pacific herring populations in Prince William Sound, AK. In Puget Sound, impacts of VHS are typically most severe among the youngest herring age cohorts because naïve juveniles are highly susceptible to the disease and resulting mortality, but the cohorts that survive exposure develop strong adaptive resistance to the disease (Hershberger et al. 2007).

Viral erythrocytic necrosis (VEN), a condition characterized by the presence of cytoplasmic inclusion bodies within affected erythrocytes occurs in marine fishes throughout Puget Sound, the most susceptible of which include Pacific herring (Hershberger et al. 2006), pink salmon (*Oncorhynchus gorbushcha*), and chum salmon (*O. keta*) (Evelyn and Traxler 1978, MacMillan & Mulcahy 1979). VEN epizootics in juvenile Pacific herring repeatedly occur throughout southeast Alaska (Meyers et al. 1986, Meyers, unpublished accession case reports) and are characterized by mass mortalities or fish demonstrating signs of morbidity. Recurring VEN epizootics also occur among juvenile herring in Puget Sound (Hershberger et al. 2009). The persistence and recurrence of VEN epizootics in Puget Sound herring indicates that the disease is likely common among juvenile herring, and although population-level impacts likely occur, they are typically covert and not easily detected.

Changes in sea temperatures can have direct and indirect impacts on herring survival. The observed decline of the Cherry Point stock since the mid-1970s coincided with warmer/dryer

than average conditions in the Pacific Northwest (Stout et al. 2001). Chapman et al. (1941) considered Cherry Point and Discovery Bay populations to be at low levels in the 1930s when similar climatic conditions occurred. Conditions shifted back to cold/wet or average during the 1940s and 1950s. Williams (1959) reported that among others, the Cherry Point and Discovery Bay populations had returned to relatively high levels of abundance during those decades.

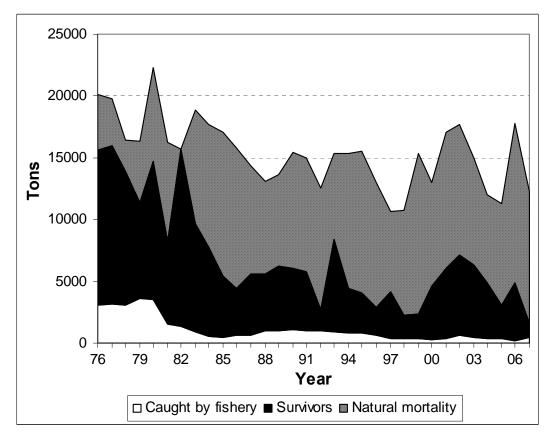


Figure 6. Natural and Fishery Mortality of Puget Sound Herring Stocks, 1976-2007.

Coastal Herring Stock Profiles

Introduction

Spawning populations of Pacific herring are documented in the coastal embayments of Willapa Bay and Grays Harbor. Initial documentation of spawning activity for Grays Harbor occurred in 1998 and has been observed intermittently since that time. Herring stock assessment by WDFW has traditionally been focused on presumed larger Puget Sound stocks and limited assessment of coastal herring stocks currently takes place.

Spawning Timing/Grounds

Herring spawning activity has been observed in February and March in Willapa Bay and February through March in Grays Harbor. Most of the spawn deposition in Grays Harbor appears to occur in the South Bay/Elk River estuary area of south Grays Harbor with some also documented in the Ocean Shores/Point Damon area.

Lassuy (1989) indicated that Pacific herring spawn in the Columbia River estuary; limited sampling by WDFW has not confirmed spawning activity there.

Stock Identification

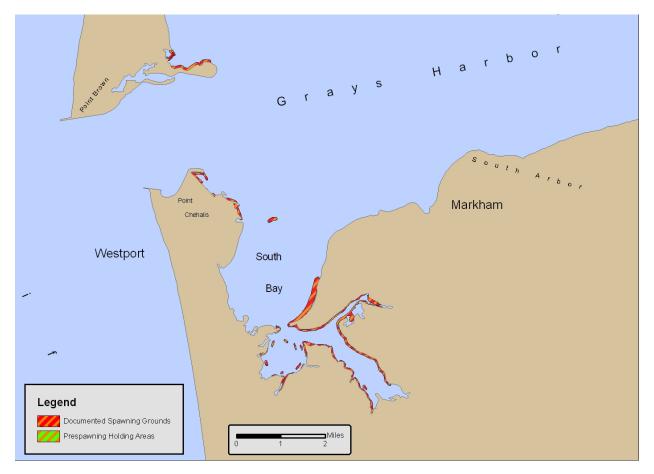
Little is known about the coastal herring populations. However, due to the geographical separation of their spawning grounds, the Willapa Bay and Grays Harbor spawning populations are considered to be discrete for the purposes of this report.

Herring spawned in coastal locations are likely components of large summer herring aggregations that concentrate in coastal offshore areas including the western end of the Strait of Juan de Fuca and the west coast of Vancouver Island.

Stock Status

The limited information available and current sampling effort for the coastal herring populations does not provide adequate basis for evaluation of the status of these stocks. Abundance of these stocks is considered to relatively small compared to Puget Sound herring stocks. The cumulative spawning biomass estimate for these areas has ranged from 0 to 694 tons annually.

Fisheries

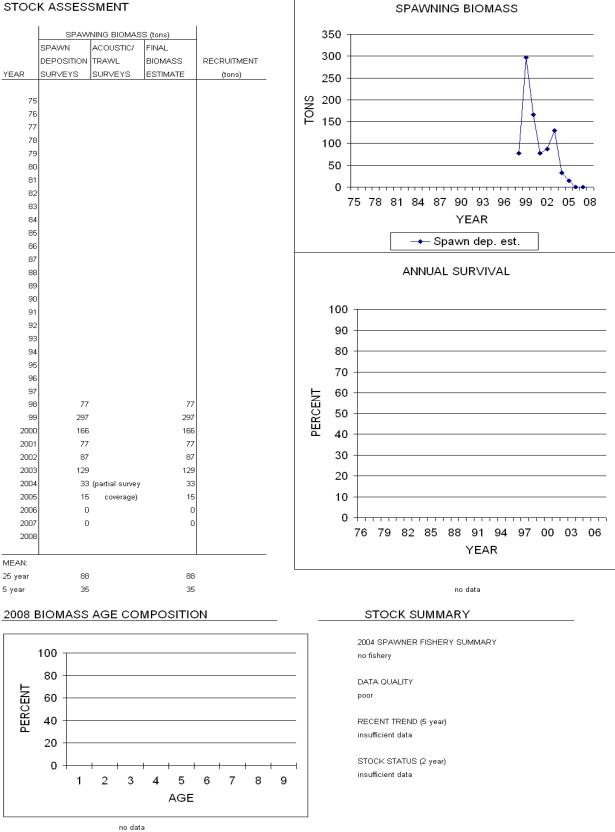

Reported fishery landings of seven tons or less have occurred since 1999 for bait herring caught Grays Harbor, with no reported landings from Willapa Bay in recent years. No directed herring fishery harvest is allowed in Washington's coastal waters.

Grays Harbor Herring Stock

OVERVIEW

Herring spawn deposition was first documented in Grays Harbor in 1998 and was observed annually until 2005. A limited amount of spawning activity has been confirmed in the Point Damon area of north Grays Harbor, but most of the stock's spawn deposition has been observed in the South Bay/Elk River estuary vicinity. Much of the spawn deposition is deposited relatively high along the intertidal salt marsh edges on a mix of vascular plants and marine algae.

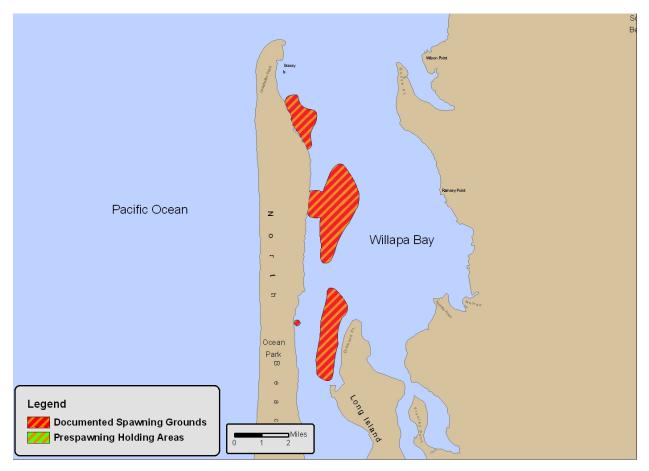
SPAWNING GROUND


SPAWNING TIMING

MEAN LENGTH OF 2/3/4/5 YEAR OLDS No data

STOCK STATUS PROFILE for South Grays Harbor Herring Stock

STOCK ASSESSMENT

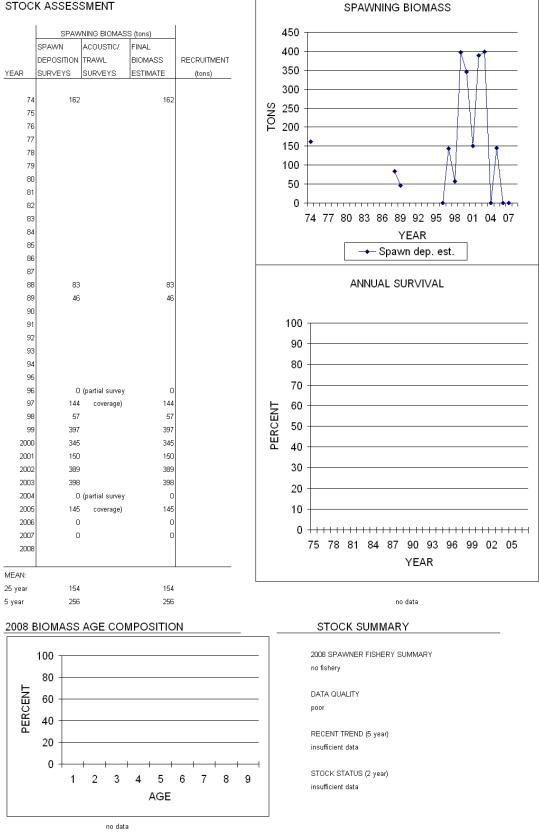


Willapa Bay Herring Stock

OVERVIEW

Limited survey effort suggests a decrease in spawning biomass for the Willapa Bay herring stock since 2004. Documented spawning grounds are limited to the southern portion of the bay. Little is known about this stock's life history, although it is likely that these fish spend significant time in ocean waters.

SPAWNING GROUND


SPAWNING TIMING

Jan	Feb	March	April	May	June

MEAN LENGTH OF 2/3/4/5 YEAR OLDS No data

STOCK STATUS PROFILE for Willapa Bay Herring Stock

STOCK ASSESSMENT

- Bargmann, G. 1998. Forage fish management plan: A plan for managing the forage fish resources and fisheries of Washington. Washington Dept. Fish and Wildlife. Online at <u>http://wdfw.wa.gov/fish/forage/manage/foragman.pdf</u>.
- Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le, K. Labaree, and K M. Miller. 2001. Population structure of herring (*Clupea pallasi*) in British Columbia: An analysis using microsatellite loci. Fisheries and Oceans Canada, Can. Sci. Advis. Secret. Res. Doc. 2001/128.
- Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le, K. Labaree, and K M. Miller. 2002. Population structure of herring (*Clupea pallasi*) in British Columbia determined by microsatellites, with comparisons to southeast Alaska and California. Fisheries and Oceans Canada, Can. Sci. Advis. Secret. Res. Doc. 2002/109.
- Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le, and L. Flostrand. 2008. Use of microsatellites to determine population structure and migration of Pacific herring in British Columbia and adjacent regions. Transactions of the American Fisheries Society 137: 1795-1811.
- Burton, S. F. 1991. Comparison of Pacific spawner herring biomass estimates from hydroacoustic-trawl and spawning ground escapement surveys in Puget Sound, Washington. In: *Proceedings of the International Herring Symposium, Anchorage, Alaska,* USA, 1990. Alaska Sea Grant Report no. 91-01, pp. 209-221.
- Chapman, W. M., M. Katz, and D. W. Erickson. 1941. The races of herring in the state of Washington. Wash. Bio. Rep. No. 38A, 36 p.
- Cleaver, F.C. and D. M. Franett. 1946. The predation by sea birds upon eggs of the Pacific herring at Holmes Harbor during 1945. Wash. Dept. Fish. Biol. Rep. No. 46B.
- Day, D. 1987. Changes in the natural mortality rate of the S. E. Strait of Georgia sac roe herring spawning stock, 1976-1985. Wash. Dept. Fish. Tech. Rep. No. 98.
- DFO, 2001. Lingcod. DFO Science Stock Status Report A6-18.
- Domanico, M. J., R. B. Phillips, and J. F. Schweigert. 1996. Sequence variation in ribosomal DNA of Pacific (*Clupea pallasi*) and Atlantic (*Clupea harengus*) herring. Canadian Journal of Fisheries and Aquatic Sciences 53: 2418-2423.
- Evelyn T.P.T. and G.S. Traxler. 1978. Viral erythrocytic necrosis: natural occurrence in Pacific salmon and experimental transmission. J. Fish. Res. Brd. Canada 35: 903–907.

- Fresh, K. L., R. D. Cardwell, and R. R. Koons. 1981. Food habits of Pacific salmon, baitfish, and their potential predators in the marine waters of Washington, August 1978 to September 1979. Wash. Dept. Fish. Prog. Rept. No. 145. 58 pp.
- Gonyea, G., S. Burton, and D. Penttila. 1982. Summary of the 1981 herring recruitment studies in Puget Sound. Wash. Dept. Fish. Prog. Rept. No. 157. 27 pp.
- Gonyea, G., S. Burton, and D. Penttila. 1983. Summary of the 1982 herring recruitment studies in Puget Sound. Wash. Dept. Fish. Prog. Rept. No. 179. 30 pp.
- Gonyea, G. and B. Trumble. 1983. Growth and mortality rates for Puget Sound herring. *In* Proceedings of the Fourth Pacific Coast Herring Workshop, October 1981, p. 133-139. Can. Manuscr. Fish. Aquat. Sci. No. 1700.
- Gustafson, R.G., J. Drake, M.J. Ford, J.M. Myers, E.E. Holmes, and R.S. Waples. 2006. Status review of Cherry Point Pacific herring (*Clupea pallasii*) and updated status review of the Georgia Basin Pacific herring distinct population segment under the Endangered Species Act. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-76, 182 p.
- Grant, W.S., and F.M. Utter. 1984. Biochemical population genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aquat. Sci. 41: 856-864.
- Haegele, C.W. and J.F. Schweigert. 1985. Distribution and characteristics of herring spawning grounds and description of spawning behavior. Can. J. Fish. Aquat. Sci. 42:39-55.
- Hay, D. E. 1986. Effects of delayed spawning on viability of eggs and larvae of Pacific herring. Trans. Am. Fish. Soc. 115:155-161.
- Hay, D. E., P. B. McCarter, and K. S. Daniel. 2001. Tagging of Pacific herring *Clupea pallasi* from 1936-1992: A review with comments on homing, geographic fidelity, and straying. Can. J. Fish. Aquat. Sci. 58:356-1370.
- Hershberger, PK, NE Elder, CA Grady, JL Gregg, CA Pacheco, C Greene, C Rice, TR Meyers. 2009. Recurring viral erythrocytic necrosis (VEN) in juvenile Pacific herring from Puget Sound, WA, USA. Journal of Aquatic Animal Health 29:1-7.
- Hershberger P.K., J Gregg, C Pacheco, J Winton, J Richard, G. Traxler. 2007. Larval Pacific herring, Clupea pallasii (Valenciennes), are highly susceptible to viral hemorrhagic septicemia and survivors are partially protected after their metamorphosis to juveniles. Journal of Fish Diseases 30: 445-458.
- Hershberger P.K, Hart S.A., Gregg J., Elder N.E., Winton J.R. 2006. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis, and Ichthyophoniasis in juvenile Pacific herring. Dis. Aquat. Org. 70: 201-208.

- Hershberger, P.K., K. Stick, B. Bui, C. Carroll, B. Fall, C. Mork, J.A. Perry, E. Sweeney, J. Wittouck, and R.M. Kocan. 2002. Incidence of *Ichthyophonus hoferi* in Puget Sound fishes and its increase with age of adult Pacific herring. Journal of Aquatic Animal Health 14: 50-56.
- Hershberger, P.K., N.E. Elder, G.D. Marty, J. Johnson, and R.M. Kocan. 2001. Management of Pacific herring closed pound spawn-on-kelp fisheries to optimize fish health and product quality. North American Journal of Fisheries Management 21: 550-555.
- Hershberger, P.K., R.M. Kocan, N.E. Elder, T.R. Meyers, and J.R. Winton. 1999. Epizootiology of viral hemorrhagic septicemia virus in herring from the closed pound spawn-on-kelp fishery. Diseases of Aquatic Organisms 37: 23-31.
- Ihssen, P. E., H. E. Booke, J. M. Casselman, J. M. McGlade, N. R. Payne, and F. M. Utter. 1981. Stock identification: materials and methods. Can. J. Fish Aquatic. Sci. 38:1838-1855.
- Jones, S. R. M. and S. C. Dawe. 2002. *Ichthyophonus hoferi* Plehn & Mulsow in British Columbia stocks of Pacific herring, *Clupea pallasi* Valenciennes, and its infectivity to Chinook salmon, *Oncorhynchus tshawytscha* (Walbaun). J. Fish Dis. 25: 415-421.
- Kocan, R., P. Hershberger, T. Mehl, N. Elder, M. Bradley, D. Wildermuth, and K. Stick. 1999. Pathogenicity of *Ichthyophonus hoferi* for laboratory-reared Pacific herring (*Clupea pallasi*) and its early appearance in wild Puget Sound herring. Dis. Aquat. Org. 35: 23-29.
- Lance, M.M. and S.J. Jeffries. 2007. Temporal and spatial variability of harbor seal diet in the San Juan Island archipelago. Contract Report to SeaDoc Society Research Agreement No. K004431-25. Washington Department of Fish and Wildlife, Olympia WA. 21 pp.
- Lassuy, D. R. 1989. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates. U.S. Dep. of Int. Bio. Rep. 82 (11.126):18.
- Lemberg, N. A., S. Burton, and W. Palsson. 1990. Hydroacoustic results for Puget Sound herring, whiting and Pacific cod surveys, 1988 and 1989. Wash. Dept. Fish. Prog. Rept. No. 281, 76p.
- Lemberg, N. A., M. F. O'Toole, D. E. Penttila, and K. C. Stick. 1997. 1996 Forage fish stock status report. Wash. Dep. Fish Wildl. Fish Manag. Prog., Dec. 1997. Stock Status Rep. No. 98-1.
- Millikan, A. and D. Penttila. 1974. Puget Sound baitfish study, July 1, 1973-June 30, 1974. Washington Departmentof Fisheries Progress Report. 32 p.
- Mitchell, Danielle M. 2006. Biocomplexity and metapopulation dynamics of Pacific herring (*Clupea pallasii*) in Puget Sound, Washington. Master's Thesis submitted in partial fulfillment for the requirements of Masters of Science, Aquatic and Fisheries Science Program, University of Washington. 75 p.

- National Marine Fisheries Service (NMFS). 1997. Investigation of scientific information on the impacts of California sea lions and Pacific harbor seals on salmonids and on the coastal ecosystems of Washington, Oregon, and California. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-28, 172 p.
- Olesiuk, P. F., M. A. Bigg, G. M. Ellis, S. J. Crockford, and R. J. Wigen. 1990. An assessment of the feeding habits of harbor seals (*Phoca vitulina*) in the Strait of Georgia, British Columbia, based on scat analysis. Can. Tech. Rep. Fish. Aquat. Sci. 1739, 135 p.
- O'Connell, M., M. C. Dillon, J. M. Wright, P. Bentzen, S. Merkouris, and J. Seeb. 1998. Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation. Journal of Fish Biology 53: 150-163.
- O'Toole, M. F. 1993. Characteristics of the 1993 Cherry Point herring spawning run and projection of run size for 1994. Wash. Dept. Fish Wildl. Brief. Rept., 22 p.
- O'Toole, M., D. Penttila, and K. Stick. 2000 (unpublished draft). A review of stock discreteness in Puget Sound herring. Wash. Dep. Fish Wildl. Brief. Rep., 27 p.
- Penttila, D.E. 1986. Early life history of Puget Sound herring. *In* Proceedings of the Fifth Pacific Coast Herring Workshop, October, 1985, p. 72-75. Can. Manuscr. Rep. Fish. Aquat. Sci. 1871.
- Penttila, D. 2007. Marine Forage Fishes in Puget Sound. Puget Sound Nearshore partnership report No. 2007-03. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington.
- Schmitt, C. C., S. J. Jeffries, and P. J. Gearin. 1995. Pinniped predation on marine fish in Puget Sound. *In* E. Robichaud (ed.), Puget Sound research '95 proceedings, p. 630-637. Puget Sound Water Quality Authority, Bellevue, WA.
- Schweigert, J. 2004. Stock assessment for British Columbia Herring in 2003 and forecasts of the potential catch in 2004. CSAS Res. Doc. 2004/005. 102 p.
- Schweigert, J.F., and R. E. Withler. 1990. Genetic differentiation of Pacific herring based on enzyme electrophoresis and mitochondrial DNA analysis. American Fisheries Society Symposium 7: 459-469.
- Sindermann, C. J. 1990. Principal Diseases of Fish and Shellfish. Second Edition. Vol. 1 Diseases of Marine Fish. Academic Press, Inc. New York (pp. 57-78).
- Small, M.P., Loxternman, J.L., Frye, A.E., VonBargen, J.F., Bowman, C. and S.F. Young. 2005. Temporal and spatial genetic structure among some Pacific herring populations in Puget Sound and the southern Strait of Georgia. Transactions of the American Fisheries Society 134:1329–1341.

- Stick, K. C. 1994. Summary of 1993 Pacific herring spawning ground surveys in Washington State waters. Wash. Dept. of Fish. Wild. Prog. Rept. no. 311, 49 p.
- Stick, K. C. 2005. 2004 Washington State herring stock status report. Washington Department of Fish and Wildlife, SS 05-01. 82 p.
- Stout, H. A., R.G. Gustafson, W. H. Lenarz, B. B. McCain, D. M. Van Doonik, T. L. Builder, and R. D. Methot. 2001. Status review of Pacific Herring in Puget Sound, Washington. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC- 45, 175 p.
- Trumble, R. J. 1983. Management plan for baitfish species in Washington State. Wash. Dept. of Fish. Prog. Rept. no. 195, 106 p.
- Trumble, R. J., J. Thorne, and N. A. Lemberg. 1982. The Strait of Georgia herring fishery: a case history of timely management aided by hydroacoustic surveys. Fish. Bull. 80(2), pp. 381-388.
- WDFW. 1995. 1994 Washington State Baitfish stock status report. Wash. Dep. Fish Wildl. Fish Manag. Prog. Nov. 1995.
- Ware, D.M. and G.A. McFarlane. 1995. Climate induced changes in Pacific hake (*Merluccius productus*) abundance and pelagic community interactions in the Vancouver Island upwelling system. P. 509-521. In R.J. Beamish [ed.] climate change and northern fish populations. Can. Spec. Publ. Fish. Aquat. Sci. 121.
- Ware, D. M., C. Tovey, D. Hay, and P. B. McCarter. 2000. Straying rates and stock structure of British Columbia herring. Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document 2000/006.
- Ware, D. M., and C. Tovey. 2004. Pacific herring spawn disappearance and recolonization events. Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document 2004/008.
- West, J. E. 1997. Protection and restoration of marine life in the inland waters of Washington state. Wash. Dep. Fish. Prepared for Puget Sound/Georgia Basin Environmental Report Series: Number 6, 144 p.
- Williams, R. W. 1959. The fishery for herring (*Clupea pallasii*) on Puget Sound. Wash. Dep. Fish Res. Papers 2:5-105.

Numerous WDFW and tribal personnel have contributed to herring stock assessment efforts in Washington. Special thanks go to Roy Clark, Kris Costello, Angela Foster, Mark O'Toole, Dan Penttila, Don Velasquez, Jennifer Whitney, and Darcy Wildermuth for many days and nights on the water. Review effort and fish disease expertise from Paul Hershberger of USGS was greatly appreciated. Thank you to David Bramwell for formatting and technical assistance.

Appendix A. Estimated biomass in short tons (2000 lbs/ton) and number (millions of fish) at age of spawner herring by stock by year (N caught includes only spawner fishery catches).

		-	-	-	-	-				
SQUAX	(IN PASS									TOTAL
									GTE	SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1975	Tons at Age	1	4	14	45	145	52	30	3	298
	N at Age	0.031	0.050	0.151	0.480	1.350	0.469	0.220	0.031	2.790
	N Caught	0	0	0	0	0	0	0	0	
	5									
1976	no age data									2138
		_			_					
1977	Tons at Age	9	10	0	0	0	0	0	0	20
	N at Age	0.001	0.081	0.032	0.049	0.071	0.038	0.010	0.001	0.282
	N Caught	0	0	0	0	0	0	0	0	
1978	Tons at Age	12	11	26	2	3	1	1	2	58
	N at Age	0.241	0.124	0.208	0.011	0.016	0.010	0.007	0.009	0.625
	N Caught	0	0	0	0	0	0	0	0	
1981	Tons at Age	118	478	85	12	47	16	0	13	772
	N at Age	2.366	6.109	0.542	0.067	0.266	0.067	0.000	0.067	9.500
	N Caught	0	0	0	0	0	0	0	0	
1990	Tons at Age	58	497	11	0	0	0	0	0	566
	N at Age	1.233	9.339	0.159	0	0	0	0	0	10.731
	N Caught	0	0	0	0	0	0	0	0	
1991	Tons at Age	439	409	94	0	0	0	0	0	943
	N at Age	12.459	7.706	1.485	0	0	0	0	0	21.65
	N Caught	0	0	0	0	0	0	0	0	
	0									
1992	Tons at Age	70	227	381	89	5	0	0	0	771
	N at Age	1.583	3.858	5.342	1.060	0.036	0	0	0	11.879
	N Caught	0	0	0	0	0	0	0	0	
	5									
1995	Tons at Age	62	79	14	2	1	0	0	0	157
	N at Age	1.205	1.0048	0.157	0.023	0.008	0	0	0	2.3978
	N Caught	0	0	0	0	0	0	0	0	
		-	•	•	-	•	•	•		
1996	Tons at Age	129	212	33	0	0	0	0	0	374
	N at Age	2.598	3.107	0.368	0.000	0.000	0	0	0	6.073
	N Caught	0	0	0	0	0	0	0	0	0.01.0
	it oudgin	Ũ	Ŭ	Ŭ	Ŭ	Ū	Ū	Ū	Ū	
1997	Tons at Age	107	37	5	0	0	0	0	0	149
1001	N at Age	2.156	0.482	0.051	0.000	0.000	0	0	0	2.689
	N Caught	2.150	0.402	0.001	0.000	0.000	0	0	0	2.005
	N Oaugin	0	0	0	0	0	0	0	0	
1998	Tons at Age	22	36	10	0	0	0	0	0	68
1550	N at Age	0.437	0.502	0.115	0.000	0.000	0	0	0	1.054
	N Caught	0.437	0.502	0.115	0.000	0.000	0	0	0	1.034
	N Caugin	0	0	0	0	0	0	0	0	
1999	Tons at Age	338	114	21	0	0	0	0	0	474
1999										
	N at Age	7.188	1.651	0.226	0.000	0.000	0	0	0	9.065
	N Caught	0	0	0	0	0	0	0	0	
2000	Topo of Aco	220	140	0	0	^	^	0	~	074
2000	Tons at Age	220	149 2 702	3	0	0	0	0	0	371
	N at Age	4.333	2.792	0.045	0.000	0.000	0	0	0	7.17
	N Caught	0	0	0	0	0	0	0	0	

SQUAX	IN PASS								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
2001	Tons at Age	1119	439	38	0	0	0	0	0	1597
	N at Age	31.545	8.301	0.535	0.000	0.000	0	0	0	40.381
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	189	2498	466	0	0	0	0	0	3150
	N at Age	4.278	49.350	7.660	0.000	0.000	0	0	0	61.288
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	70	1127	850	119	35	0	0	0	2201
	N at Age	1.743	21.802	13.167	1.623	0.374	0	0	0	38.709
	N Caught	0	0	0	0	0	0	0	0	
2004	Tons at Age	95	346	322	59	2	3	0	0	828
	N at Age	2.161	6.319	5.322	0.861	0.038	0	0	0	14.743
	N Caught	0	0	0	0	0	0	0	0	
2005	Tons at Age	180	102	94	38	22	0	0	0	436
	N at Age	4.286	1.679	1.375	0.538	0.245	0	0	0	8.123
	N Caught	0	0	0	0	0	0	0	0	
2006	Tons at Age	361	228	146	14	7	0	0	0	755
	N at Age	6.856	3.179	1.728	0.149	0.065	0	0	0	11.977
	N Caught	0	0	0	0	0	0	0	0	
2007	Tons at Age	40	379	102	32	4	0	0	0	557
	N at Age	0.701	5.472	1.279	0.391	0.041	0	0	0	7.884
	N Caught	0	0	0	0	0	0	0	0	
2008	Tons at Age	1008	18	0	0	0	0	0	0	1026
	N at Age	31.12	0.232	0	0	0	0	0	0	31.352
	N Caught	0	0	0	0	0	0	0	0	

WOLLC	OCHET BAY								OTE	TOTAL
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	GTE Age 9	SPAWNER BIOMASS
YEAR										
2000	Tons at Age	45	82	10	3	2	0	0	0	142
	N at Age	0.851	1.226	0.102	0.023	0.011	0	0	0	2.213
	N Caught	0	0	0	0	0	0	0	0	
2001	Topo of Ago	59	52	22	0	0	0	0	0	133
2001	Tons at Age				-					
	N at Age	1.528	0.719	0.225	0.000	0.000	0	0	0	2.472
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	23	56	19	5	3	0	0	0	106
	N at Age	0.564	1.073	0.200	0.036	0.018	0	0	0	1.891
	N Caught	0	0	0	0	0	0	0	0	
2003	no age data									152
2004	no age data									52
2005	no age data									67

WOLLC	CHET BAY								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
2006	no age data									27
2007	no age data									35
2008	no age data									45

QUART	ERMASTER HA	RBOR							GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1995	Tons at Age	1433	410	146	10	0	0	0	0	2001
	N at Age	26.259	4.952	1.497	0.115	0	0	0	0	32.823
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	477	315	12	0	0	0	0	0	805
	N at Age	8.921	4.401	0.122	0.000	0.000	0	0	0	13.444
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	1147	231	24	0	0	0	0	0	1402
	N at Age	23.909	3.094	0.281	0.000	0.000	0	0	0	27.284
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	287	457	184	19	0	0	0	0	947
	N at Age	4.970	4.970	1.621	0.162	0.000	0	0	0	11.723
	N Caught	0	0	0	0	0	0	0	0	
1999	Tons at Age	1115	106	38	0	0	0	0	0	1257
	N at Age	22.289	1.454	0.363	0.000	0.000	0	0	0	24.106
	N Caught	0	0	0	0	0	0	0	0	
2000	Tons at Age	171	556	16	0	0	0	0	0	743
	N at Age	2.884	8.254	0.199	0.000	0.000	0	0	0	11.337
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	198	1044	78	0	0	0	0	0	1320
	N at Age	3.888	14.176	0.729	0.000	0.000	0	0	0	18.793
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	41	206	167	2	0	0	0	0	416
	N at Age	0.933	2.736	1.741	0.031	0.000	0	0	0	5.441
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	150	541	179	60	0	0	0	0	930
	N at Age	3.809	10.093	2.666	0.667	0.000	0	0	0	17.235
	N Caught	0	0	0	0	0	0	0	0	
2004	Tons at Age	40	186	252	189	32	27	0	0	727
	N at Age	1.003	3.364	3.186	2.006	0.295	0	0	0	10.090
	N Caught	0	0	0	0	0	0	0	0	
2005	Tons at Age	250	278	110	65	45	9	0	0	756
	N at Age	5.93	4.983	1.577	0.82	0.378	0.063	0	0	13.751
	N Caught	0	0	0	0	0	0	0	0	

QUARTERMASTER HARBOR GTE										TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
2006	Tons at Age	659	241	63	0	16	8	0	0	987
	N at Age	12.854	3.613	0.829	0	0.177	0.059	0	0	17.532
	N Caught	0	0	0	0	0	0	0	0	
2007	no age data									441
2008	Tons at Age	403	33	28	27	0	0	0	0	491
	N at Age	11.317	0.458	0.285	0.228	0	0	0	0	12.288
	N Caught	0	0	0	0	0	0	0	0	

PORT	ORCHARD/MAD	ISON							GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1988	Tons at Age	431	839	358	36	29	12	0	0	1705
	N at Age	6.807	8.95	2.906	0.293	0.208	0.061	0	0	19.225
	N Caught	0	0	0	0	0	0	0	0	
1989	Tons at Age	670	466	496	108	0	0	0	0	1739
	N at Age	12.009	4.945	4.588	0.782	0.05	0.05	0	0	
	N Caught	0.609	0.251	0.233	0.4	0	0	0	0	
1990	Tons at Age	766	648	174	127	59	22	0	0	1795
	N at Age	15.137	7.943	1.494	0.997	0.409	0.119	0	0	26.099
	N Caught	0	0	0	0	0	0	0	0	
1991	Tons at Age	380	146	118	18	47	12	1	0	722
	N at Age	8.013	2.054	1.231	0.152	0.416	0.078	0.015	0	11.959
	N Caught	0	0	0	0	0	0	0	0	
1992	Tons at Age	156	116	30	9	2	1	0	0	314
	N at Age	3.343	1.679	0.294	0.058	0.011	0.005	0	0	5.390
	N Caught	0	0	0	0	0	0	0	0	
1993	Tons at Age	266	16	15	3	4	0	0	0	304
	N at Age	4.988	0.19	0.148	0.025	0.019	0	0	0	5.370
	N Caught	0	0	0	0	0	0	0	0	
1994	Tons at Age	198	192	22	11	0	0	0	0	424
	N at Age	3.249	2.284	0.182	0.079	0	0	0	0	5.794
	N Caught	0	0	0	0	0	0	0	0	
1995	Tons at Age	619	165	79	0	0	0	0	0	863
	N at Age	11.988	1.87	0.683	0	0	0	0	0	14.541
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	429	310	63	4	0	0	0	0	806
	N at Age	8.27	4.297	0.631	0.025	0	0	0	0	13.223
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	214	130	14	2	0	0	0	0	360
	N at Age	4.226	1.645	0.126	0.012	0	0	0	0	6.009
	N Caught	0	0	0	0	0	0	0	0	

PORT	ORCHARD/MADI	SON							GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1998	Tons at Age	381	87	16	5	0	0	0	0	489
	N at Age	8.156	1.304	0.146	0.04	0	0	0	0	9.646
	N Caught	0	0	0	0	0	0	0	0	
1999	Tons at Age	1765	187	32	22	0	0	0	0	2006
	N at Age	37.913 0	2.542 0	0.339 0	0.017 0	0 0	0 0	0 0	0 0	40.811
	N Caught	0	0	0	0	0	0	0	0	
2000	Tons at Age	592	1110	53	2	0	0	0	0	1756
	N at Age	11.406	17.808	0.673	0.017	0	0	0	0	29.904
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	1158	682	157	10	0	0	0	0	2007
	N at Age	27.825	9.793	1.587	0.075	0	0	0	0	39.280
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	268	525	56	15	14	0	0	0	878
	N at Age	6.632	8.733	0.745	0.149	0.108	0	0	0	16.367
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	283	522	228	48	4	1	0	0	1085
	N at Age	7.031	9.783	3.095	0.486	0.040	0.010	0	0	20.445
	N Caught	0	0	0	0	0	0	0	0	
2004	Tons at Age	116	366	169	48	0	0	0	0	700
	N at Age	2.616	5.948	2.078	0.509	0.006	0.003	0	0	11.160
	N Caught	0	0	0	0	0	0	0	0	
2005	Tons at Age	499	826	492	101	39	2	0	0	1958
	N at Age	11.26	13.541	6.481	1.036	0.386	0.022	0	0	32.726
	N Caught	0	0	0	0	0	0	0	0	
2006	Tons at Age	1038	752	288	29	5	0	0	0	2112
	N at Age	19.325	11.094	3.699	0.268	0.038	0	0	0	34.424
	N Caught	0	0	0	0	0	0	0	0	
2007	Tons at Age	155	1187	191	47	7	3	0	0	1589
	N at Age	2.787	16.939	2.261	0.484	0.06	0.015	0	0	22.546
	N Caught	0	0	0	0	0	0	0	0	
2008	Tons at Age	881	193	101	11	0	0	0	0	1186
	N at Age	20.392	2.774	1.176	0.115	0	0	0	0	24.457
	N Caught	0	0	0	0	0	0	0	0	

PORT	GAMBLE								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR	T	50	450	004	00	74	05	40	4.5	1110
1976	Tons at Age	58	453	381	86	71	65	13	15	1142
	N at Age	0.866	4.425	2.809	0.548	0.414	0.404	0.058	0.096	9.62
	N Caught									
1977	no age data									2525
1978	Tons at Age	87	270	389	421	403	252	103	60	1984
	N at Age	1.170	2.352	2.465	2.415	2.201	1.220	0.491	0.264	12.578
	N Caught									
1979	Tons at Age	0	548	360	523	179	181	0	0	1790
	N at Age	0.000	4.460	2.286	2.779	0.840	0.840	0.000	0.000	11.206
	N Caught									
1980	no age data									2309
1981	Tons at Age	221	633	380	307	138	47	28	0	1753
	N at Age	2.897	5.409	2.419	1.595	0.598	0.226	0.133	0.000	13.290
	N Caught	2.001	01100	2		0.000	0.220	0.100	0.000	
1987	Tons at Age	935	820	256	35	0	0	0	0	2046
	N at Age	14.535	8.479	2.2	2.33	0	0	0	0	27.544
	N Caught	0.078	0.046	0.012	0.001	0	0	0	0	0.137
1988	Tons at Age	461	713	178	36	0	0	0	0	1390
	N at Age	6.159	6.644	1.319	0.243	0	0	0	0	14.365
	N Caught	0.142	0.153	0.03	0.006	0	0	0	0	0.331
1989	Tons at Age	1339	532	371	153	0	0	0	0	2395
1000	N at Age	22.302	5.582	3.122	1.119	0	0	0	0	32.125
	N Caught	0.133	0.033	0.019	0.007	0	0	0	0	0.192
	it outgin	0.100	0.000	0.010	0.001	Ŭ	Ū	Ŭ	Ũ	0.102
1990	Tons at Age	965	1155	606	178	65	0	0	0	2969
	N at Age	15.678	11.974	4.457	1.127	0.376	0	0	0	33.612
	N Caught	0.454	0.347	0.129	0.033	0.011	0	0	0	0.974
								_	_	
1991	Tons at Age	380	915	630	194	104	36	0	0	2259
	N at Age	6.695	10.226	5.677	1.482	0.751	0.22	0	0	25.051
	N Caught	0.265	0.404	0.224	0.059	0.03	0.009	0	0	0.991
1992	Tons at Age	454	1251	454	79	30	0	0	0	2270
	N at Age	6.693	13.44	3.882	0.615	0.2	0	0	0	24.83
	N Caught	0.007	0.013	0.004	0.001	0	0	0	0	0.025
	0									
1993	Tons at Age	922	365	183	35	15	0	0	0	1521
	N at Age	18.052	4.107	1.7	0.263	0.098	0	0	0	24.22
	N Caught	0.012	0.003	0.001	0	0	0	0	0	0.016
1004	Tons at Ass	1054	006	FEO	206	40	0	0	0	00E7
1994	Tons at Age	1054 15.075	986	569	206	40	0	0	0	2857
	N at Age	15.975	10.981	4.834	1.46	0.236	0	0	0	33.486
	N Caught	0	0	0	0	0	0	0	0	0
1995	Tons at Age	1964	742	344	92	13	0	0	0	3158
	N at Age	35.324	8.22	2.968	0.692	0	0.057	0	0	47.261
	N Caught	0	0	0	0	0	0	0	0	0
	e e									

PORT	GAMBLE								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1996	Tons at Age	805	903	315	37	0	0	0	0	2058
	N at Age	13.915	11.325	2.932	0.289	0	0	0	0	28.461
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	844	473	77	26	0	0	0	0	1419
	N at Age	13.555	4.741	0.578	0.127	0	0	0	0	19.001
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	257	486	208	7	13	0	0	0	971
	N at Age	5.013	6.61	2.044	0.05	0.073	0	0	0	13.79
	N Caught	0	0	0	0	0	0	0	0	
1999	Tons at Age	917	582	148	17	0	0	0	0	1664
	N at Age	17.476	7.909	1.531	0.128	0	0	0	0	27.044
	N Caught	0	0	0	0	0	0	0	0	
2000	Tons at Age	890	1338	182	34	12	0	0	0	2459
	N at Age	17.448	20.304	2.091	0.377	0.121	0	0	0	40.341
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	585	1035	148	11	0	0	0	0	1779
	N at Age	9.328	11.749	1.353	0.071	0	0	0	0	22.501
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	313	1058	393	49	0	0	0	0	1812
	N at Age	5.91	13.557	3.939	0.348	0	0	0	0	23.754
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	184	621	231	29	0	0	0	0	1064
	N at Age	5.91	13.557	3.939	0.348	0	0	0	0	23.754
	N Caught	0	0	0	0	0	0	0	0	
2003	no age data									1064
2004	no age data									1257
2005	Tons at Age	361	320	351	216	106	9	0	9	1372
	N at Age	7.528	5.141	4.499	2.295	1.102	0.092	0	0.092	20.749
	N Caught	0	0	0	0	0	0	0	0	
2006	no age data									774
2007	no age data									826
2008	no age data									208

KILISU [.]	T HARBOR								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1994	Tons at Age	81	149	17	46	0	0	0	0	292
	N at Age	1.176	1.554	0.126	0.252	0	0	0	0	3.108
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	279	83	18	0	0	0	0	0	380
	N at Age	4.73	0.898	0.132	0	0	0	0	0	5.76
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	123	103	64	17	0	0	0	0	307
	N at Age	1.688	1.019	0.478	0.096	0.000	0	0	0	3.281
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	97	133	72	6	3	0	0	0	311
	N at Age	1.683	1.557	0.609	0.054	0.018	0	0	0	3.921
	N Caught	0	0	0	0	0	0	0	0	
1999	Tons at Age	768	26	7	0	0	0	0	0	802
	N at Age	16.939	0.434	0.059	0.000	0.000	0	0	0	17.432
	N Caught	0	0	0	0	0	0	0	0	
2000	Tons at Age	90	17	0	0	0	0	0	0	107
	N at Age	2.084	0.250	0.000	0.000	0.000	0	0	0	2.334
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	214	348	43	7	0	0	0	0	612
	N at Age	4.065	4.286	0.385	0.050	0.000	0	0	0	8.786
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	165	527	75	7	0	0	0	0	774
	N at Age	2.428	6.555	0.810	0.081	0.000	0	0	0	9.874
	N Caught	0	0	0	0	0	0	0	0	
2003	no age data									448
2004	Tons at Age	39	125	18	2	0	0	0	0	184
	N at Age	1.925	0.578	0.252	0.252	0.074	0.015	0	0	3.096
	N Caught	0	0	0	0	0	0	0	0	
2005	0	87	59	11	13	0	0	0	0	170
	N at Age	2	1.114	0.164	0.131	0	0	0	0	3.409
	N Caught	0	0	0	0	0	0	0	0	
2006	no age data									54
2007	no age data									24
2008	no age data									0
_000	age data									5

PORT S	SUSAN								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1995	Tons at Age	176 2.643	122 1.144	60 0.483	5 0.025	0 0	0 0	0 0	0 0	363 4.295
	N at Age N Caught	0	0	0.485	0.025	0	0	0	0	4.295
1996	Tons at Age N at Age	36 0.548	58 0.644	16 0.137	0 0.000	0 0.000	0 0	0 0	0 0	110 1.329
	N Caught	0.548	0.044	0.157	0.000	0.000	0	0	0	1.525
1997	Tons at Age	198 2.884	524 5.438	96 0.824	10 0.082	0 0.000	0	0 0	0	828 9.228
	N at Age N Caught	2.884 0	5.438 0	0.824	0.082	0.000	0 0	0	0 0	9.220
1998	Tons at Age N at Age	279 5.127	1202 15.227	565 5.438	38 0.311	0 0.000	0 0	0 0	0 0	2084 26.103
	N Caught	0	0	0.430 0	0.311	0.000	0	0	0	20.105
1999	no age data									545
2000	Tons at Age N at Age	166 2.665	428 5.552	184 1.926	6 0.051	0 0.000	0 0	0 0	0 0	785 10.194
	N Caught	2.005	0	0	0.051	0.000	0	0	0	10.194
2001	Tons at Age	357 6.839	207 2.550	23 0.232	0 0.000	0 0.000	0 0	0 0	0 0	587 9.621
	N at Age N Caught	0.039	2.550	0.232	0.000	0.000	0	0	0	9.021
2002	Tons at Age	71 1.384	353 5.015	310 3.517	41 0.404	0 0.000	0 0	0 0	0 0	775 10.32
	N at Age N Caught	0	0	0	0.404	0.000	0	0	0	10.32
2003	Tons at Age N at Age	85 2.219	298 4.851	53 0.721	14 0.155	0 0.000	0 0	0 0	0 0	450 7.946
	N Caught	0	4.851	0.721	0.155	0.000	0	0	0	7.940
2004	Tons at Age N at Age	74 1.556	144 2.413	152 2.063	51 0.623	7 0.078	0 0	0 0	0 0	429 6.733
	N Caught	0	0	0	0.020	0.070	0	0	0	0.700
2005	no age data									157
2006	no age data									321
2007	Tons at Age N at Age	10 0.142	295 4.248	254 2.832	69 0.708	15 0.142	0 0	0 0	0	643 8.072
	N Caught	0.142	4.248 0	2.832 0	0.708	0.142	0	0	0 0	0.072
2008	no age data									345

HOLME	S HARBOR								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR		Ū	U	Ū	Ū	U	U	U	U	
1996	Tons at Age	230	68	38	0	0	0	0	0	336
	N at Age	4.479	0.817	0.328	0	0	0	0	0	5.624
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	277	200	52	0	0	0	0	0	530
	N at Age	5.256	2.471	0.470	0.000	0.000	0	0	0	8.197
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	134	166	128	26	12	0	0	0	464
	N at Age	3.052	2.616	1.134	0.174	0.087	0	0	0	7.063
	N Caught	0	0	0	0	0	0	0	0	
1999	no age data									175
2000	no age data									281
2001	no age data									275
2002	no age data									573
2003	no age data									678
2004	no age data									673
2005	no age data									498
2006	no age data									1297
2007	no age data									572
2008	Tons at Age	80 2.077	444 6.153	159 1.951	3 0.025	0 0.000	0	0 0	0 0	686 10.206
	N at Age N Caught	2.077	0.153 0	1.951 0	0.025	0.000	0 0	0	0	10.200

SKAGI	ΓΒΑΥ								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1995	Tons at Age	257	366	267	0	0	0	0	0	891
	N at Age	3.739	3.49	2.243	0	0	0	0	0	9.472
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	629	107	0	0	0	0	0	0	736
	N at Age	13.718	1.407	0.000	0.000	0.000	0	0	0	15.125
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	791	101	0	0	0	0	0	0	892
	N at Age	18.055	1.509	0.000	0.000	0.000	0	0	0	19.564
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	127	62	20	0	0	0	0	0	209
	N at Age	3.031	1.023	0.218	0.000	0.000	0	0	0	4.272
	N Caught	0	0	0	0	0	0	0	0	

SKAGI	Τ ΒΑΥ								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1999	no age data									905
2000	Tons at Age	464	161	21	0	0	0	0	0	646
	N at Age	10.040	2.584	0.262	0.000	0.000	0	0	0	12.886
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	688	1243	226	13	0	0	0	0	2170
	N at Age	12.820	15.768	2.143	0.095	0.000	0	0	0	30.826
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	465	1108	576	66	0	0	0	0	2215
	N at Age	9.403	16.494	6.937	0.616	0.000	0	0	0	33.45
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	1199	1426	331	27	0	0	0	0	2983
	N at Age	30.342	24.875	4.641	0.236	0.000	0	0	0	60.094
	N Caught	0	0	0	0	0	0	0	0	
2004	Tons at Age	300	646	238	47	7	6	0	0	1245
	N at Age	6.915	11.927	3.742	0.702	0.081	0	0	0	23.448
	N Caught	0	0	0	0	0	0	0	0	
2005	5 Tons at Age	234	419	408	93	15	0	0	0	1169
	N at Age	4.94	6.642	5.967	1.111	0.147	0	0	0	18.807
	N Caught	0	0	0	0	0	0	0	0	
2006	6 Tons at Age	1421.503	979.3465	397.1405	28.00991	0	0	0	0	2826
	N at Age	25.258	13.165	4.439	0.306	0	0	0	0	43.168
	N Caught	0	0	0	0	0	0	0	0	
2007	7 Tons at Age	35.9709	893.2773	268.7825	37.96928	0	0	0	0	1236
	N at Age	0.703	13.786	3.63	0.453	0	0	0	0	18.572
	N Caught	0	0	0	0	0	0	0	0	
2008	3 Tons at Age	181	874	273	14	0	0	0	0	1342
	N at Age	4.216	12.227	3.318	0.128	0	0	0	0	19.889
	N Caught	0	0	0	0	0	0	0	0	
FIDALO	GO BAY								GTE	TOTAL SPAWNER
		Age 2	Aae 3	Aae 4	Aae 5	Aae 6	Age 7	Age 8	Age 9	BIOMASS

		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
1992	Tons at Age	270	767	269	81	13	0	0	0	1399
	N at Age	6.987	13.581	3.641	1.083	0.197	0	0	0	25.489
	N Caught	0	0	0	0	0	0	0	0	
1993	Tons at Age	894	356	128	26	14	0	0	0	1417
	N at Age	19.706	6.031	1.699	0.17	0.085	0	0	0	27.691
	N Caught	0	0	0	0	0	0	0	0	
1994	Tons at Age	548	454	153	45	6	0	0	0	1207
	N at Age	10.43	7.327	2.111	0.487	0.103	0	0	0	20.458
	N Caught	0	0	0	0	0	0	0	0	

FIDALO	GO BAY								GTE	TOTAL SPAWNER
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1995	Tons at Age	772	240	106	27	28	0	0	0	1173
	N at Age	19.078	4.101	1.426	0.357	0.357	0	0	0	25.319
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	210	291	74	15	0	0	0	0	590
	N at Age	4.792	4.250	0.995	0.090	0.000	0	0	0	10.127
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	543	301	85	0	0	0	0	0	929
	N at Age	14.166	4.481	0.723	0.000	0.000	0	0	0	19.370
	N Caught	0	0	0	0	0	0	0	0	
1998	Tons at Age	500	284	43	18	0	0	0	0	844
	N at Age	11.006	4.442	0.464	0.133	0.000	0	0	0	16.045
	N Caught	0	0	0	0	0	0	0	0	
1999	no age data									1005
2000	Tons at Age	404	300	18	15	0	0	0	0	737
	N at Age	8.320	4.530	0.277	0.185	0.000	0	0	0	13.312
	N Caught	0	0	0	0	0	0	0	0	
2001	Tons at Age	169	569	171	35	0	0	0	0	944
	N at Age	3.310	8.851	1.924	0.308	0.000	0	0	0	14.393
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	593	165	91	15	0	0	0	0	865
	N at Age	14.214	2.496	0.977	0.109	0.000	0	0	0	17.796
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	48	254	164	94	8	0	0	0	569
	N at Age	1.004	4.319	2.008	0.703	0.100	0	0	0	8.134
	N Caught	0	0	0	0	0	0	0	0	
2004	no age data									339
2005	no age data									231
2006	no age data									323
2007	no age data									159
2008	no age data									156

SAMISH	I/PORTAGE BAY								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1994	Tons at Age N at Age N Caught	348 6.599 0	88 1.245 0	18 0.244 0	4 0.032 0	0 0 0	0 0 0	0 0 0	0 0 0	459 8.120
1995	Tons at Age N at Age N Caught	128 2.611 0	39 0.5 0	21 0.231 0	6 0.067 0	0 0 0	0 0 0	0 0 0	0 0 0	194 3.409
1996	Tons at Age N at Age N Caught	259 4.336 0	333 4.336 0	44 0.417 0	0 0.000 0	0 0.000 0	0 0 0	0 0 0	0 0 0	636 9.089
1997	Tons at Age N at Age N Caught	310 6.203 0	165 1.948 0	30 0.253 0	4 0.035 0	0 0.000 0	0 0 0	0 0 0	0 0 0	509 8.439
1998	Tons at Age N at Age N Caught	284 6.525 0	286 5.171 0	72 0.985 0	0 0.000 0	0 0.000 0	0 0 0	0 0 0	0 0 0	643 12.681
1999	no age data									555
2000	no age data									196
2001	Tons at Age N at Age N Caught	255 4.871 0	173 2.389 0	41 0.375 0	0 0.000 0	0 0.000 0	0 0 0	0 0 0	0 0 0	470 7.635
2002	Tons at Age N at Age N Caught	194 4.591 0	203 3.549 0	71 0.899 0	22 0.190 0	5 0.047 0	0 0 0	0 0 0	0 0 0	496 9.276
2003	Tons at Age N at Age N Caught	20 0.437 0	109 1.598 0	98 1.046 0	56 0.513 0	12 0.076 0	0 0.000 0	5 0.038 0	0 0.000 0	299 3.708
2004	no age data									351
2005	no age data									218
2006	no age data									412
2007	no age data									348
2008	no age data									409

INTERIO	OR SAN JUAN IS	SLANDS							GTE	TOTAL SPAWNER
VEAD		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR		0.40	407			•				170
1993	Tons at Age	343	107	23	0	0	0	0	0	472
	N at Age	6.438	1.231	0.189	0	0	0	0	0	7.858
	N Caught	0	0	0	0	0	0	0	0	
1996	Tons at Age	113	137	23	4	0	0	0	0	277
	N at Age	2.378	2.201	0.276	0.031	0	0	0	0	4.886
	N Caught	0	0	0	0	0	0	0	0	
1997	Tons at Age	30	0	0	0	0	0	0	0	30
	N at Age	0.677	0.000	0.000	0.000	0.000	0	0	0	0.677
	N Caught	0	0	0	0	0	0	0	0	
1998	no age data									
1999	no age data									197
2000	Tons at Age	112	16	0	0	0	0	0	0	128
	N at Age	2.798	0.289	0.000	0.000	0.000	0	0	0	3.087
	N Caught	0	0	0	0	0	0	0	0	
2001	no age data									219
2002	no age data									158
2003	no age data									72
2004	no age data									67
2005	no age data									41
2006	no age data									285
2007	no age data									33
2008	no age data									60

SEMIAH	IMOO BAY								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
	T	004	4000	400	10	0	0	0	0	4005
1988	Tons at Age	664	1063	189	49	0	0	0	0	1965
	N at Age	9.508	10.914	1.406	0.335	0	0	0	0	22.163
	N Caught	0	0	0	0	0	0	0	0	
1989	Tons at Age	655	583	396	48	19	0	0	0	1701
	N at Age	10.89	5.954	3.081	0.32	0.134	0	0	0	20.379
	N Caught	0	0	0	0	0	0	0	0	
1990	Tons at Age	1330	380	116	75	29	0	0	0	1930
	N at Age	25.239	5.013	0.994	0.54	0.195	0	0	0	31.981
	N Caught	0	0	0	0	0	0	0	0	
1991	Tons at Age	1164	536	155	136	70	0	0	0	2061
	N at Age	21.772	6.887	1.555	0.889	0.444	0	0	0	31.547
	0					-	-	-	-	51.547
	N Caught	0	0	0	0	0	0	0	0	

SEMIAH	IMOO BAY								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
1992	Tons at Age N at Age N Caught	417 7.716 0	729 8.901 0	207 1.819 0	81 0.56 0	41 0.251 0	14 0.063 0	12 0.063 0	0 0 0	1501 19.373
1993	Tons at Age N at Age N Caught	1390 25.266 0	268 3.201 0	164 1.485 0	63 0.439 0	10 0.061 0	6 0.045 0	0 0 0	0 0 0	1902 30.497
1994	Tons at Age N at Age N Caught	870 14.375 0.0000	367 4.231 0.0001	119 1.114 0.0010	18 0.15 0.0003	14 0.077 0.0008	0 0 0	0 0 0	0 0 0	1389 19.947
1996	Tons at Age N at Age N Caught	688 12.746 0	423 4.869 0	87 0.654 0	17 0.123 0	5 0 0	0 0.033 0	0 0 0	0 0 0	1219 18.425
1997	Tons at Age N at Age N Caught	297 5.88 0	260 2.973 0	50 0.387 0	13 0 0	0 0.062 0	0 0 0	0 0 0	0 0 0	621 9.302
1998	Tons at Age N at Age N Caught	601 14.121 0	230 3.896 0	74 0.852 0	16 0.122 0	0 0 0	0 0 0	0 0 0	0 0 0	919 18.991
1999	no age data									868
2000	Tons at Age N at Age N Caught	793 16.063 0	126 1.866 0	7 0.08 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	926 18.009
2001	no age data									1098
2002	no age data									1012
2003	no age data									1087
2004	no age data									629
2005	no age data									870
2006	no age data									1277
2007	no age data									1124
2008	no age data									662

CHERR	Y POINT								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
	-									
1973	Tons at Age	15	765	5864	4649	2880	645	90	0	14998
	N at Age	0.163	7.562	35.128	22.768	12.523	2.765	0.407	0.000	81.315
	N Caught	0.022	1.013	4.816	3.249	1.566	0.321	0.053	0	
1974	Tons at Age	42	1690	2430	4761	3281	1466	251	28	13963
	N at Age	0.542	23.213	16.619	26.284	15.897	6.594	0.994	0.090	90.322
	N Caught	0.025	1.331	3.593	9.236	6.773	2.715	0.34	0.084	
1975	Tons at Age	10	1954	1003	1923	3039	1819	538	52	10337
	N at Age	0.162	15.416	6.091	9.271	13.584	7.277	1.994	0.162	53.903
	N Caught	0.027	2.847	2.141	4.206	5.949	2.937	0.742	0.049	
1976	Tons at Age	379	794	2854	1587	2132	2653	1137	308	11844
	N at Age	5.528	10.169	18.087	8.327	9.828	11.057	4.368	1.229	68.251
	N Caught	0.535	1.014	3.415	1.922	2.136	2.173	0.703	0.195	00.201
	N Outgin	0.000	1.014	0.410	1.022	2.100	2.170	0.700	0.100	
1977	Tons at Age	932	2486	843	1409	1065	1609	1665	1088	11097
	N at Age	13.912	22.406	6.151	7.908	5.199	6.810	6.663	4.100	73.221
	N Caught	0.826	1.568	2.394	2.003	2.052	1.768	0.965	0.429	
1978	Tons at Age	77	4521	1920	878	944	636	834	1174	10973
	N at Age	1.237	41.753	14.150	5.026	4.717	2.784	3.402	4.253	77.320
	N Caught	0.117	4.969	2.655	1.343	1.534	0.836	0.817	0.869	
1979	Tons at Age	269	976	3983	1872	747	996	438	687	9957
	N at Age	3.824	8.066	25.751	10.038	3.525	4.242	1.733	2.629	59.748
	N Caught	0.579	1.265	4.45	2.095	1.014	0.909	0.392	0.533	
4000	Tana at Asa	2000	<u> </u>	700	40.47	4540	40.4	045	200	0000
1980	Tons at Age	3209	690	793	1847	1549	494	345	308	9329
	N at Age	40.156	6.217	5.047	9.948	7.241	2.121	1.317	1.097	73.144
	N Caught	4.897	1.041	1.736	1.822	0.965	0.338	0.154	0.161	
1981	Tons at Age	448	2631	740	647	1188	348	87	131	6219
	N at Age	5.991	20.715	4.894	3.164	5.274	1.392	0.338	0.422	42.189
	N Caught	0	0	0	0	0	0	0	0	
1982	Tons at Age	1261	1122	1747	614	299	230	64	0	5342
	N at Age	16.415	8.957	10.665	3.166	1.292	0.958	0.250	0.000	41.662
	N Caught	0.275	0.764	0.405	0.146	0.127	0.053	0.015	0.001	
1983	Tons at Age	1846	1580	1451	2185	597	161	202	40	8063
	N at Age	24.702	12.504	8.661	10.918	2.623	0.671	0.793	0.183	60.993
	N Caught	0	0	0	0	0	0	0	0	
1984	Tons at Age	1664	779	926	1151	985	242	71	77	5901
	N at Age	23.954	6.494	5.868	5.724	4.425	1.010	0.289	0.289	48.100
	N Caught	0	0	0.000	0	0	0	0	0	10.100
1985	Tons at Age	1659	2385	1020	271	207	150	40	29	5760
1300	-		2365 21.667						0.000	
	N at Age	23.895		6.907	1.448	0.947	0.613	0.167		55.700
	N Caught	0	0	0	0	0	0	0	0	
1986	Tons at Age	2393	1718	754	414	250	74	51	11	5671
	N at Age	30.802	14.959	5.465	2.208	1.214	0.276	0.221	0.055	55.200
	N Caught	0	0	0	0	0	0	0	0	

CHERR	Y POINT								GTE	TOTAL SPAWNER
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
	T	044	4007	<u> </u>	400	00	07	00	07	24.00
1987	Tons at Age	814	1287	622	199	90	37	22	37	3108
	N at Age	12.576	11.026	4.261	1.103	0.447	0.149	0.089	0.119	29.800
	N Caught	0.578	0.523	0.232	0.074	0.03	0.012	0.004	0.008	
1988	Tons at Age	1089	1793	1014	385	111	35	0	4	4428
	N at Age	14.794	16.120	6.593	2.010	0.523	0.161	0.000	0.000	40.200
	N Caught	0.408	0.448	0.194	0.063	0.017	0.004	0	0.001	
1989	Tons at Age	2086	809	745	348	12	8	0	0	4003
	N at Age	34.104	7.889	4.998	1.911	0.049	0.049	0.000	0.000	49.000
	N Caught	1.86	0.441	0.38	0.196	0.003	0.004	0	0	
1990	Tons at Age	1864	1769	450	605	265	25	20	0	4998
	N at Age	27.183	18.389	3.091	3.198	1.279	0.107	0.107	0.000	53.300
	N Caught	1.509	1.024	0.188	0.22	0.091	0.007	0.005	0	
	Ū.									
1991	Tons at Age	754	1766	1151	499	398	46	14	0	4624
	N at Age	10.613	16.758	7.820	2.673	1.796	0.200	0.040	0.000	39.900
	N Caught	0.545	0.871	0.451	0.175	0.121	0.013	0.004	0	
1992	Tons at Age	1527	850	1119	349	88	60	8	0	4009
	N at Age	23.758	8.288	7.820	1.955	0.383	0.255	0.043	0.000	42.500
	N Caught	1.05	0.369	0.382	0.109	0.022	0.015	0.002	0	
1993	Tons at Age	3475	626	299	240	171	69	10	0	4894
	N at Age	55.342	6.767	2.211	1.407	0.871	0.268	0.067	0.000	67.000
	N Caught	3.179	0.392	0.152	0.121	0.092	0.029	0.006	0	
1994	Tons at Age	4876	873	304	133	114	19	6	0	6324
	N at Age	73.725	9.248	2.161	0.691	0.519	0.086	0.000	0.000	86.430
	N Caught	3.695	0.47	0.156	0.076	0.049	0.007	0.003	0	
1995	Tons at Age	1519	1942	320	99	189	33	4	0	4105
	N at Age	20.262	18.080	2.223	0.503	0.713	0.126	0.000	0.000	41.950
	N Caught	1.514	1.362	0.204	0.069	0.094	0.014	0.002	0	
1996	Tons at Age	573	1111	1083	204	53	68	6	0	3095
	N at Age	8.654	10.789	7.789	1.125	0.202	0.288	0.029	0.000	28.847
	N Caught	0.359	0.45	0.343	0.059	0.009	0.013	0.001	0	
1997	Tons at Age	236	630	595	82	33	0	0	0	1574
1001	N at Age	3.856	6.051	4.360	0.445	0.133	0.000	0.000	0.000	14.830
	N Caught	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.000
1998	Tons at Age	841	205	196	59	21	0	0	0	1322
1990	N at Age	13.064	205	1.361	0.323	0.119	0.000	0.000	0.000	17.010
	0									17.010
	N Caught	0	0	0	0	0	0	0	0	
1999	Tons at Age	267	884	82	29	4	0	0	0	1266
	N at Age	4.183	9.129	0.650	0.155	0.014	0.000	0.000	0.000	14.131
	N Caught	0	0	0	0	0	0	0	0	
2000	Tons at Age	370	249	185	3	0	0	0	0	808
	N at Age	5.221	2.514	1.413	0.018	0.000	0.000	0.000	0.000	9.175
	N Caught	0	0	0	0.010	0.000	0.000	0.000	0.000	55
		Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	v	5	

CHERRY POINT TOTAL GTE SPAWNER										
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR										
2001	Tons at Age	374	565	247	56	0	0	0	0	1241
	N at Age	5.592	6.434	1.897	0.328	0.000	0.000	0.000	0.000	14.265
	N Caught	0	0	0	0	0	0	0	0	
2002	Tons at Age	646	430	174	37	43	0	0	0	1330
	N at Age	11.173	5.202	1.520	0.220	0.220	0.000	0.000	0.000	18.317
	N Caught	0	0	0	0	0	0	0	0	
2003	Tons at Age	838	596	122	42	13	0	0	0	1611
	N at Age	14.411	7.876	1.245	0.311	0.072	0.000	0.000	0.000	23.939
	N Caught	0	0	0	0	0	0	0	0	
2004	Tons at Age	23	388	740	406	101	54	23	0	1734
	N at Age	0.375	4.168	5.717	2.668	0.584	0.264	0.107	0.000	13.894
	N Caught	0	0	0	0	0	0	0	0	
2005 Tons at Age		267	1522	169	36	16	0	0	0	2010
	N at Age	5.196	26.045	2.236	0.328	0.109	0	0	0	33.914
	N Caught	0	0	0	0	0	0	0	0	0
200	6 Tons at Age	541	1491	129	55	0	0	0	0	2216
	N at Age	6.252	16.721	1.145	0.519	0	0	0	0	24.637
	N Caught	0	0	0	0	0	0	0	0	0
200	7 Tons at Age	241	1411	503	14	0	0	0	0	2169
	N at Age	3.886	19.932	5.253	0.072	0	0	0	0	29.143
	N Caught	0	0	0	0	0	0	0	0	0
200	8 Tons at Age	0	999	353	0	0	0	0	0	1352
	N at Age	0	11.424	3.36	0	0	0	0	0	14.784
	N Caught	0	0	0	0	0	0	0	0	0

DISCOVERY BAY TOTAL GTE SPAWNER										
YEAR		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
	Tana at Asa	4	50	070	400	00	400	20	04	007
1976	Tons at Age	1	59	270	100	86	123	38	21	697
	N at Age	0.014	0.602	2.113	0.579	0.466	0.635	0.184	0.108	4.706
	N Caught	0	0	0	0	0	0	0	0	
1977	Tons at Age	88	312	268	317	149	192	97	67	1488
	N at Age	1.165	3.088	2.058	2.070	0.939	1.108	0.532	0.339	11.310
	N Caught	0	0	0	0	0	0	0	0	
		-	, i	•	•	•	•	· ·	•	
1978	Tons at Age	0	0	0	0	0	0	0	0	1305
1070	N at Age	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1000
	0									
	N Caught	0	0	0	0	0	0	0	0	
1979	Tons at Age	71	116	132	159	89	173	102	42	882
	N at Age	0.891	1.102	0.972	1.009	0.551	0.922	0.539	0.210	6.190
	N Caught	0	0	0	0	0	0	0	0	
	0									
1980	Tons at Age	1877	763	274	71	119	52	58	0	3220
	N at Age	25.405	7.703	2.111	0.518	0.778	0.259	0.259	0.000	37.034
	0									07.004
	N Caught	0	0	0	0	0	0	0	0	

DISCOVERY BAY TOTAL GTE SPAWNER										
		Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	BIOMASS
YEAR 1981	Tons at Age N at Age N Caught	61 0.975 0	1243 10.866 0	614 4.333 0	328 2.155 0	347 1.951 0	316 1.701 0	101 0.476 0	61 0.250 0	3070 22.685
1988	Tons at Age N at Age N Caught	536 7.640 0	263 2.670 0	55 0.400 0	0 0.000 0	0 0.000 0	0 0 0	0 0 0	0 0 0	853
1996	Tons at Age N at Age N Caught	431 6.65 0	290 3.172 0	28 0.191 0	5 0.038 0	0 0 0	0 0 0	0 0 0	0 0 0	752 10.051
1997	Tons at Age N at Age N Caught	176 4.335 0	23 0.360 0	0 0.003 0	0 0.000 0	0 0.000 0	0 0 0	0 0 0	0 0 0	199 4.698
1998	no age data									0
1999	no age data									307
2000	no age data									159
2001	no age data									137
2002	no age data									148
2003	no age data									207
2004	no age data									252
2005	no age data									33
2006	no age data									1325
2007	no age data									42
2008	no age data									248

This program receives Federal financial assistance from the U.S. Fish and Wildlife Service Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. The U.S. Department of the Interior and its bureaus prohibit discrimination on the bases of race, color, national origin, age, disability and sex (in educational programs). If you believe that you have been discriminated against in any program, activity or facility, please write to:

U.S. Fish and Wildlife Service Office of External Programs 4040 N. Fairfax Drive, Suite 130 Arlington, VA 22203